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Computational pathology, new horizons 
and challenges for anatomical pathology
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Abstract 

The emergence of digital pathology environments and the application of computer vision to the analysis of histologi‑
cal sections has given rise to a new area of Anatomical Pathology, termed Computational Pathology. Advances in 
Computational Pathology may substantially change the routine of Anatomical Pathology laboratories and the work 
profile of the pathologist.
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Introduction
The transition from Anatomical Pathology into Com-
putational Pathology is on the horizon. This medical 
specialty has undergone two significant events: its estab-
lishment as a specific area of medical knowledge, based 
on macroscopic observations, and a shift in emphasis 
from gross to microscopic observation. Now, Anatomical 
Pathology is on the cusp of a third moment, the transi-
tion to Computational Pathology. This article will briefly 
examine the elements that propel pathology in this direc-
tion and the challenges that will be faced along the way. 
To illustrate these developments, we will examine the 
experience of the Brazilian PathoSpotter project, an ini-
tiative that has been dedicated to the development of 
Computational Pathology for the past seven years.

Moments in and models of Anatomical Pathology
Prelude to Anatomical Pathology as a medical specialty
The notion that diseases can be morphologically 
explained dates back to the beginnings of medicine. 
External alterations observed during the course of some 
diseases, and alterations observed in internal organs dur-
ing the preparation of corpses for burial, may have estab-
lished the basis of this conception. Thus, ceramic models 

with descriptions of lesions were produced in ancient 
Babylon between 1900—1600 BC, while more system-
atic descriptions of macroscopic findings supporting the 
differential diagnosis of diseases are found in the Ebers 
papyrus (1550 BC) and the Edwin Smith papyrus (1600 
BC). B.C) (Leichty, et  al. 1988a; Bryan 1930; Breasted 
1930):

When thou meetest a tumour of the flesh in any part 
of the body of a person, and thou findest it like hide 
in his flesh; he is clammy; it goes-and-comes under 
thy finger except when the finger is kept still because 
the matter escapes through it, then thou sayest: It 
is a Tumour of the Flesh. I will treat the disease. I 
will try to heal it with Fire like the Cautery heals.’ 
(Papiro de Ebers, cap. XXI, Diagnosis) (Bryan 1930)

“Instructions concerning bulging tumors on his breast.

Examinaton: If thou examinest a man having bulg-
ing tumors on his breast, (and) thou findest that 
[swellings] have spread over his breast ; if thou 
puttest thy hand upon his breast upon these tumors, 
(and) thou findest them very cool, there being no 
fever at all therein when thy hand touches him; they 
have no granulation, they form no fluid, they do not 
generate secretions of fluid, and they are bulging to 
thy hand, (conclusion follows in diagnosis).
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Diagnosis: Thou shouldst say concerning him: " One 
having bulging tumors. An ailment with which I will 
contend."

Treatment: There is no treatment. (Papiro de Edwin 
Smith, caso 45) (Breasted 1930)

Clinical-pathological correlations intensified through 
experimental studies of vivisections carried out in ancient 
Greece by Herophilos (335 – 280 BC) and Erasistratos 
(304 – 250 BC), and later by Galen (129 – 201). Subse-
quently, a resurgence of interest in necropsy studies led 
to the descriptions of lesions by Bologna (1270), followed 
in Italy and elsewhere in Europe by new publications of 
autopsy findings, including case series and systematized 
studies by Antonio Benivieni (1443–1502), Vesalius 
(1514–1564), Theophilus Bonet (1620–1689), among 
others (Tweel and Taylor 2010). The seminal work that 
best represents how this work impacted medical knowl-
edge is “De Sedibus et Causis Morborum per Anatomen 
Indagatis” (On the Seats and Causes of Diseases through 
Anatomical Investigation), by Giovanni Battista Mor-
gagni (1682–1771). In his work, which consists of 70 
letters to an unknown friend, Morgagni establishes ana-
tomical-clinical correlations from 640 autopsies (Yonace 
and Morgagni 1980). In these letters, morphological find-
ings are discussed in the context of the patient’s clinical 
history and comparisons with human and animal stud-
ies. Morgagni’s work established the concept that organ 
damage constituted the basis of disease, and marked the 
birth of Anatomical Pathology as a specific area of medi-
cal knowledge.

The microscope and cellular pathology
Microscopes, both simple and compound, were used in 
studies of insects in the sixteenth century. Microscopic 
examination of human and plant tissues began in the sev-
enteenth century, including by Marcello Malpighi (1628–
1694), considered the founder of histology (Engelhardt 
2021; Singer 1914). The optical improvements introduced 
to the compound microscope between the eighteenth 
and nineteenth centuries stimulated its use as a comple-
mentary instrument in the study of disease. In the mid-
nineteenth century, despite the effervescent application 
of new biochemical and physical knowledge to the study 
of pathology, microscopy emerged as the main resource 
for understanding pathological processes. This develop-
ment resulted from the conception that diseases are the 
result of microscopic changes that occur on a cellular 
level. This conception of cellular pathology was elegantly 
presented by Rudolf Virchow (1821–1902) in a series of 
20 lessons richly illustrated by drawings of microscopic 
structures (Virchow et al. 1858). The concept of cellular 
pathology broadened the scope of Anatomical pathology 

and increased its sensitivity in detecting and understand-
ing disease. This advent also expanded the role of Ana-
tomical pathology as an explanatory field of medicine and 
progressively intensified its integration into the medical 
decision-making system.

Computational Pathology – the third revolution?
Until the first half of the twentieth century, Anatomical 
Pathology played a predominantly explanatory role. The 
integration of basic medical and clinical knowledge has 
placed Anatomical pathology at the center of medical 
training and resulted in vast improvements in the quality 
of medical practice. This prominent position was main-
tained by pathology until the third post-Flexnerian wave 
that gained strength in the late decades of the twentieth 
century (Buja 2019). Coincidentally, from the mid-twen-
tieth century onwards, developments in medical imag-
ing made it possible to collect small tissue samples from 
all internal organs for diagnostic purposes. The need for 
microscopic analysis of these samples has expanded the 
integration of Anatomical pathology into decision-mak-
ing approaches for therapeutic management and disease 
prognosis estimation (Fig. 1).

The changing role from explanatory to operational of 
Anatomical pathology necessitated new requirements 
entailing more robust criteria for lesion characteriza-
tion, consensus definition among specialists and esti-
mations of interobserver and intraobserver agreement 
in establishing diagnoses. Indeed, a substantial part of 
pathology congresses are dedicated to tutorials on dis-
ease classification criteria and discussions on the vali-
dation of recently proposed disease classifications, and 
specific meetings are conducted to continuously update 
some disease classifications (Roufosse et al. 2018; Trima-
rchi et al. 2017; Bajema et al. 2018). Nowadays it is com-
mon to see pathologists’ workspaces ‘decorated’ with 
tables cropped from articles summarizing definitions 
from recent consensus meetings; classification protocols 
are also frequently accessed online (College of Ameri-
can Pathologists - Cancer Protocols and Checklists. n. 
d.). This constant search for a consensus-defined diag-
nosis aims to obtain precision and clarity in the report-
ing of anatomopathological examination findings, and 
allows for improved exchanges of information between 
specialists and better patient care. It also places the fol-
lowing demands on pathologists that have primed the 
transition of Anatomical pathology into Computational 
Pathology: (1) Some pathological disease classifications 
are highly labor-intensive, e.g. several categories require 
pathologists to reach a decision regarding the presence 
or absence of lesions, sometimes requiring the applica-
tion of ordinal estimates. 2) Some lesions used as cri-
teria for disease classification are only focally or subtly 
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represented and may thusly be overlooked, and errors in 
diagnosis may occur due to the absence of detection of 
specific criteria. 3) The strength of inter observer agree-
ment is frequently average or even poor for some lesions 
despite carefully elaborated classifications (Bellur, et  al. 
2019).

Importantly, the emergence of computational pathol-
ogy is also being driven by a fascination with histologi-
cal images by pathologists, as well as the emergence and 
cheapening of digital image capture systems. This has led 
to the creation of large collections of histological images 
ready for use in computational pathology projects.

Many countries have launched computational pathol-
ogy initiatives in the last decade (Wiens et  al. 2019; 
Colling et  al. 2019). In 2019, a proposal from INOVA 
UK envisaged the creation of five centers of excellence 
in digital pathology in the United Kingdom, with artifi-
cial intelligence being applied to imaging. (Colling et al. 
2019). A recent call for proposals from the National Insti-
tutes of Health (USA), entitled “Data Generation Projects 
for the NIH Bridge to Artificial Intelligence (Bridge2AI) 
Program (OT2),” aimed to support the building of large 
and diverse image datasets (National Institutes of Health, 
Data Generation Projects for the NIH Bridge to Artificial 
Intelligence. n.d.). In addition, roadmaps have been pro-
posed for the development of computational pathology 

systems ranging from conception to certification (Colling 
et al. 2019). In Brazil, while some institutions and fund-
ing agencies have called for proposals in this area, gov-
ernment policies aimed at stimulating the adoption of 
computational pathology have yet to be established.

An initial step towards the transition to Computational 
Pathology has already been taken by various Anatomical 
pathology laboratories involving the progressive digitali-
zation of physical slide collections and the use of digital 
tools in the analytical phase of diagnosis. In some labo-
ratories, the pre-analytical phase of anatomopathologi-
cal study progressively includes whole histological slide 
scanning (WSI), enabling remote access and examination 
using computers and/or tablets. The possibility of simul-
taneous access to the same slide by different pathologists 
allows for rapid exchanges of information among special-
ists, offering greater diagnostic precision. By applying 
appropriate data security protocols, anatomopathological 
collections will no longer be vulnerable to loss or dam-
age (e.g., discoloration and artifacts produced during the 
retrieval process, etc.)

Digital workflows based on WSI or other digital his-
tological image repositories are referred to as Digital 
Pathology. Digital Pathology also includes telepathol-
ogy (the transmission of microscopic images) and digi-
tal histological image analysis performed by humans or 

Fig. 1 Three moments in Anatomical pathology: The foundation as an area of medical knowledge, marked by the publication of “De Sedibus et 
Causis Morborum per Anatomen Indagatis” by Morgagni in 1761. The second moment is represented by the conception of Cellular Pathology 
and the publication of Virchow’s lectures in 1858. Computational Pathology represents a possible future in pathology. The two previous moments 
produced, and the third, in perspective, should produce important changes in the pathologist’s environment, routine activities (macroscopic 
examination, microscopy and computational analysis), and object of study
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computer systems (i.e., Computational Pathology). Com-
putational Pathology includes the extraction or genera-
tion of quantitative data from digital images, either alone 
or in conjunction with other biological or omic data.

The PathoSpotter project
The PathoSpotter project arose from the need for a com-
puter system capable of scanning histological image 
banks in order to find cases with similar structures or 
lesions given a specific histological image or region of 
interest. This method of identifying and classifying his-
tological lesions would be useful to pathologists in their 
diagnostic routines, and benefit the training of patholo-
gists as well as the conduct of scientific research. Consid-
ering that the Gonçalo Moniz Institute (IGM-FIOCRUZ) 
possessed a rich collection of histological images from 
renal biopsies, this was one of the most important condi-
tions enabling development in the area of computational 
nephropathology. Reports have appeared in the litera-
ture on advances made in computational oncological 
pathology, such as the classification of breast, prostate, 
lung tumors, etc., and in the identification of metastatic 
infiltration of cancer cells into lymph nodes. Some stud-
ies have reported superior performance by computer 
systems in comparison to that of pathologists (Sheikh 
et al. 2020; Arvaniti et al. 2018; Hekler et al. 2019). One 
factor underlying the PathoSpotter project was the scar-
city of reports involving computational pathology in the 
context of non-neoplastic disease. A major challenge in 
the computational modeling of non-neoplastic diseases 

is the complex interactions between cells and the extra-
cellular matrix that lead to extensive tissue remodeling. 
A wide spectrum of representations are produced by a 
single lesion type due to alterations arising from these 
interactions. In contrast to the repetitive image patterns 
observed in neoplasms, non-neoplastic lesions are sub-
stantially diverse in appearance.

To initiate the PathoSpotter project, three of the most 
frequent glomerular lesions in renal pathology were cho-
sen: glomerular hypercellularity, segmental glomerular 
sclerosis and membranous glomerulopathy (Fig. 2). Glo-
merular hypercellularity, which is present in several glo-
merulopathies, is considered a diagnostic marker and is 
used to determine activity in many kidney diseases. Seg-
mental glomerular sclerosis is a scar on part of the glo-
merulus, representing the final stage of many glomerular 
lesions or the main feature of some glomerular diseases. 
It is therefore considered a marker for diagnosis or chro-
nicity in kidney disease. Membranous glomerulopathy is 
characterized by a very specific morphological change: 
diffuse thickening of the glomerular capillary wall. The 
prevalence of membranous glomerulopathy is increasing 
in accordance with enhanced life expectancy (Fogo. n. d.).

PathoSpotter has taken advantage of the availability 
of more than 130,000 images collected from 3,000 renal 
biopsies analyzed by IGM-FIOCRUZ. This collection 
contains images of renal biopsies performed on native 
kidneys of female and male patients, aged between 1 
and 88 years, for the purpose of diagnosing nephropa-
thies. The images, obtained over a span of 20 years using 

Fig. 2 Normal glomerulus (a) and lesions defined as the subject of study by the PathoSpotter project (b‑d): b – glomerular hypercellularity, c – 
glomerular segmental sclerosis, d – membranous glomerulopathy. Hematoxylin–eosin stain, 200x
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different digital capture systems, were captured from 
slides stained by different histochemical techniques 
used in nephropathological diagnosis, and are predomi-
nantly represented by snapshots of normal or injured 
glomeruli. A more detailed description of the collection 
has been reported in dos-Santos et al., 2019 (Dos-San-
tos et al. 2017).

From a collection of 811 images, 300 of normal glo-
meruli and 511 of glomeruli exhibiting hypercellular-
ity, Barros et  al. (2017) employed a classic machine 
learning approach to processing, segmentation, fea-
ture extraction, classification and validation, enabling 
the creation of an algorithm capable of distinguishing 
normal from hypercellular glomeruli with an accuracy 
of 88.3 ± 3.6% (Barros et  al. 2017). Subsequently, Cha-
gas et al., using the same image dataset, a convolutional 
neural network (CNN), and a support vector machine 
(SVM), two powerful machine learning approaches, 
created an architectural model capable of separating 
normal from hypercellular glomeruli with near-perfect 
accuracy (Chagas et al. 2020). Using the same approach 
applied to a dataset distributed in four classes: endocap-
illary hypercellularity, mesangial hypercellularity, mixed 
endocapillary and mesangial hypercellularity (both 
lesions present) and normal glomeruli, an average accu-
racy of 82% was achieved (Chagas et al. 2020). Because 
the location of hypercellularity among different regions 
of the glomerulus leads to different implications in 
terms of disease activity, the automatic classification of 
these four categories of glomerular injury represents a 
highly relevant contribution to the field (Fogo. n. d.). An 
interesting observation from this study is that six of the 
811 images were misclassified by the CNN-SVM model. 
These images were then subjected to independent anal-
ysis by three pathologists whose analysis resulted in 
agreement in just two of the lesions represented. In fact, 
the six images depict complex glomerular lesions with 
increased cellularity due to cell proliferation and the 
influx of inflammatory cells, causing the disruption of 
glomerular compartments (Chagas et al. 2020). Prelimi-
nary data from automatic classification studies of seg-
mental sclerosis and membranous glomerulopathy have 
also shown encouraging results. Using a combination of 
classical image processing and pattern recognition, an 
accuracy of 84.8% was achieved using images of H&E-
stained sections to classify glomeruli with segmental 
sclerosis, compared to 81.3% for PAS-stained section 
images (Araújo et  al. 2019). An investigation employ-
ing three deep learning-based architectures, ResNet-18, 
DenseNet, and Wide-ResNet, to separate normal glo-
meruli from membranous glomerulopathy, or glomeruli 
with other lesions, reported an average F1 score above 
92% for each of the models (Chagas et al. n. d.).

All of these studies used images consisting of snapshots 
of renal biopsies, representing the glomerulus and other 
renal histological structures, such as tubules, the inter-
stitium and blood vessels. Improved performance of these 
algorithms may be achieved if analysis is performed on 
the glomerulus alone, absent adjacent structures. Rahem 
et al. (2021) achieved a 0.94 F1-score using the Multibox 
Single Shot Detector network with Inception V2 to iden-
tify glomeruli in histological images (J. Moreira Cardozo 
Rehem, et al. n. d.). Further developments in segmenting 
glomeruli using WSI, as well as attempts to explain what 
the computer is using to classify histological structures 
(i.e., Explainable AI) are being currently undertaken by 
the PathoSpotter project.

Challenges in the transition to computational pathology
The point in which Anatomical pathology transitions to 
computational still seems distant. This may occur pro-
gressively, combining automation with pathologist super-
vision. Among the many challenges to making this a 
reality, several are highlighted below:

1) The lack of diverse, properly labeled and comprehen-
sive image datasets consisting of diverse histological 
lesions;

2) Datasets must be in some way linked to clinical 
patient data to allow the validation of external algo-
rithms, in addition to morphological validations per-
formed by pathologists;

3) An appropriate definition of histological lesions with 
acceptable levels of agreement among specialists 
does not yet exist for most renal diseases;

4) Variations occurring in the pre-analytical stages of 
image production due to image processing and cap-
ture systems introduce inconsistencies;

5) Inadequate representation of lesion characteristics in 
infrequent diseases causes imbalance in image data-
sets;

6) Algorithms must meet regulatory standards for test-
ing and use in clinical settings.

These questions are the focus of research by many 
groups, and a variety of interesting solutions are emerg-
ing, such as the use of generative adverse neural networks 
to expand the number of rare lesion images, systems to 
correct color quality in scanned images, computational 
staining (color attribution to histological section images), 
and the building of consortia for large-scale histological 
image dataset generation, including contributions from 
many parts of the world (National Institutes of Health, 
Data Generation Projects for the NIH Bridge to Artificial 
Intelligence (Bridge2AI)Program(OT2). n. d.; Rana et al. 
2020; Rana et al. 2020; Chen et al. 2021).
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The role of the Pathologist after the third revolution 
in Anatomical Pathology
The emergence of computational pathology in a fully 
developed digital pathology environment represents a 
very different scenario from that experienced today in 
Anatomical pathology laboratories. In this new reality, 
the colors imbued by hematoxylin–eosin and other his-
tochemical stains will be computationally attributed to 
histological sections with just a few strokes of the com-
puter’s keyboard. Biopsies will be analyzed by computer 
algorithms with differing levels of supervision by the 
pathologist. Time spent at the microscope—the patholo-
gist’s main activity today—will be much less, and happen 
less and less frequently. For this reason, we employ the 
term ‘revolution’ in this article. In contrast to Salto-Tellez 
et al., (2019) who consider the changes brought by arti-
ficial intelligence to pathology similar to those brought 
by immunohistochemistry (Salto-Tellez et  al. 2019), we 
postulate that computational pathology will introduce 
radical changes in the way pathologists work and how 
Anatomical pathology laboratories are organized. The 
disruption that will occur parallels two other moments in 
the history of Anatomical pathology: (1) The first revo-
lution, in which Giovanni Morgagnin’s work gave rise to 
Anatomical pathology as an area of medical knowledge, 
placed early pathologists in the necropsy environment 
and prompted them to carry out gross morphological 
analysis of surgical specimens when necessary; (2) the 
second revolution, following Virchow’s Cell Pathology, 
transferred the pathologist’s work environment to the 
laboratory, with microscopic analysis becoming routine. 
Recent advances in diagnostic systematization and the 
progressive immersion of the pathologist in therapeutic 
decision-making, together with the emergence of compu-
tational pathology, are leading the pathologist on a new 
and mostly unknown path. However, in this new role, it 
will be necessary for the pathologist to not lose the abil-
ity to critically analyze the morphological data produced 
by computational systems. Pathologists may also be 
required to fully understand how different data integra-
tion systems work and to possess the medical knowledge 
necessary to integrate data generated by different omics.

Conclusion
Computational pathology the third revolution in Ana-
tomical pathology may substantially expand the patholo-
gist’s ability to offer definitive diagnostic information 
leading to more precise medical interventions.
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