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Abstract 

Background:  Advances in digital imaging in pathology and the new capacity to scan high-quality images have 
change the way to practice and research in surgical pathology. QuPath is an open-source pathology software that 
offers a reproducible way to analyze quantified variables. We aimed to present the functionality of biomarker scor-
ing using QuPath and provide a guide for the validation of pathologic grading using a series of cases of urothelial 
carcinomas.

Methods:  Tissue microarrays of urothelial carcinomas were constructed and scanned. The images stained with HE, 
CD8 and PD-L1 immunohistochemistry were imported into QuPath and dearrayed. Training images were used to 
build a grade classifier and applied to all cases. Quantification of CD8 and PD-L1 was undertaken for each core using 
cytoplasmic and membrane color segmentation and output measurement and compared with pathologists semi-
quantitative assessments.

Results:  There was a good correlation between tumor grade by the pathologist and by QuPath software (Kappa 
agreement 0.73). For low-grade carcinomas (by the report and pathologist), the concordance was not as high. Of the 
32 low-grade tumors, 22 were correctly classified as low-grade, but 11 (34%) were diagnosed as high-grade, with the 
high-grade to the low-grade ratio in these misclassified cases ranging from 0.41 to 0.58. The median ratio for bona 
fide high-grade carcinomas was 0.59. Some of the reasons the authors list as potential mimickers for high-grade cases 
are fulguration artifact, nuclear hyperchromasia, folded tissues, and inconsistency in staining. The correlation analysis 
between the software and the pathologist showed that the CD8 marker showed a moderate (r = 0.595) and statisti-
cally significant (p < 0.001) correlation. The internal consistency of this parameter showed an index of 0.470. The cor-
relation analysis between the software and the pathologist showed that the PDL1 marker showed a robust (r = 0.834) 
and significant (p < 0.001) correlation. The internal consistency of this parameter showed a CCI of 0.851.
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Introduction
Since the 1970s and, more importantly, in the past 
20 years, immunohistochemistry (IHC) has been proven 
to be an effective, well-established, and widely accepted 
method in the Surgical Pathology laboratory to aid in 
the conventional histochemical stains of tissue sections. 
Diagnosis of disease, particularly cancer, is based on the 
examination of cells by light microscopy and on detect-
ing specific molecules, such as proteins and nucleic 
acids, which are routinely identified in biopsy tissues 
by antibody-binding or nucleic hybridization technolo-
gies. The techniques have improved, and now, hundreds 
of antibodies, probes, and reaction protocols are per-
formed worldwide to identify specific cell types, sub-
classify tumors, provide information on cancer-specific 
drivers, estimate aggressiveness of neoplasms, predict 
response to therapy, identify infectious agents, and many 
other applications (Cimino-Mathews 2021; McGinnis 
et  al. 2021; Oh and Mahalingam 2019; Ross et  al. 2020; 
Shah et al. 2013; Shelton et al. 2017). Guidelines for the 
standardization and analytic validation of IHC have been 
established by the College of American Pathologists, with 
regular updates (Hardy et al. 2013; Satturwar et al. 2019).

According to specific tumor types and antibodies used, 
pathologists usually score findings in a semiquantitative 
fashion, based on marker distribution, percent of positive 
cells, and/or stain intensity. IHC slides are predominantly 
stained with DAB and are counterstained with hematoxy-
lin. Examples of successful surgical pathology histories 
include assessing HER2 positivity in breast cancer, ki67 
quantification in various neoplasms, and, more recently, 
the use of PD-L1 scoring (in tumor and immune cells) 
to predict response to immunotherapy in a plethora of 
cancer types (Cimino-Mathews 2021; Guo et  al. 2020; 
McGinnis et  al. 2021). In both research and the clini-
cal scenario, the H-score and Allred scoring systems are 
decades-old and still used to assess the percentage and 
intensity of cell staining (Harvey et al. 1999; McCarty Jr. 
et al. 1986).

Several research studies have relied on tissue micro-
arrays (TMA) combined with IHC, to allow high 
throughput analysis of multiple tumor samples (Ilyas 
et  al. 2013; Loughrey et  al. 2018; Gray et  al. 2017; 
Gurgel et  al. 2020; Ozbudak et  al. 2009; Morais et  al. 
2019). With digital pathology and the capacity to scan 

whole slides with high-quality of images, new software 
and platforms have been created to help researches and 
pathologists quantify and classify tissues and tumors. 
QuPath is an open-source pathology analysis software 
that offers a reproducible way to analyze and provide 
quantified variables and permits training and subse-
quent classification of cells using automated digital 
algorithms (Bankhead et  al. 2017; Humphries et  al. 
2021).

In this study, we aimed to assess the (1) feasibility of 
scanning and analyzing tissue microarrays for bladder 
cancer, (2) show the functionality of biomarker scor-
ing using QuPath, and (3) provide a step-by-step guide 
for the validation of pathologic grading using a series 
of cases of urothelial carcinoma stained with HE, CD8 
and PD-L1.

Methods
Patients and tumor samples
The cohort consisted of 1 hundred and 40 bladder can-
cer patients with samples originating from transurethral 
resections and radical cystectomies from a reference 
laboratory in genitourinary pathology. Demographic data 
available and collected included sex, age, smoking status 
and overall survival. Individuals with neoadjuvant, prior 
BCG therapy or radiation therapy were excluded. Tumors 
obtained from formalin-fixed, paraffin-embedded (FFPE) 
specimens were retrospectively collected from the files of 
a reference laboratory in Northeastern Brazil after receiv-
ing Institutional Review Board approval. Tissue sections 
were retrieved from dominant tumor foci. Tumor sam-
ples were classified as low or high-grade according to the 
grading system accepted by the WHO in 2016.

Tissue microarray (TMA) construction
Two tissue microarrays (TMAs) were constructed using 
a manual tissue arrayer as previously described (Gurgel 
et al. 2020). For each case, a 2 mm core of a representa-
tive area was selected from the hematoxylin-eosin 
(HE)-stained sections from bladder specimens by an 
experienced genitourinary pathologist. Tissue cores 
that contained < 100 tumor cells were removed from 
the analysis.

Conclusions:  We were able to demonstrate the utility of QuPath in identifying and scoring tumor cells and IHC quan-
tification of two biomarkers. The protocol we present uses a free open-source platform to help researchers deal with 
imaging and data processing in the surgical pathology field.

Keywords:  Digital pathology, QuPath, CD8, Tumor infiltrating lymphocytes, Programmed death-ligand 1 
immunotherapy, Biomarker, Bladder cancer
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Immunohistochemical analyses
IHC was performed in a private laboratory that holds 
the Brazilian Society of Pathology quality accreditation 
program seal. PD-L1 and CD8 were chosen to prove the 
versatility and potential use of QuPath in a specific T cell 
marker (CD8) and PD-L1, which is the most vital marker 
to assess response to immunotherapy. These biomarkers 
were chosen as both are well characterized, and antibod-
ies are in routine clinical use in most pathology labora-
tories. In addition, these markers show very different 
patterns. CD8 marks specifically a subclass of T-cells in a 
uniform manner, while PD-L1 stains tumors and immune 
cells in membranous and/or cytoplasmic ways with vari-
able intensity.

Sequential sections were cut from each TMA block and 
mounted on charged microscopy glass slides for immu-
nohistochemical staining. The PD-L1 IHC analysis (22C3 
pharmDx, Agilent, clone 22c3) was performed using 
PT-Link (Dako PT100), followed by target recovery with 
EnVision™ FLEX pH 6.0 buffer, using the Agilent Tech-
nologies®, USA visualization system in Autostainer Link 
48® equipment. PD-L1 positivity was assessed according 
to the current protocol.

Tumor T-cell immune infiltrate characterization was 
performed by evaluating CD8 (DAKO, clone C8/144b) 
by immunohistochemistry in all TMAs. The density of 
CD8+ T cells was evaluated as the overall percentage 
of the area within the borders of the tumors covered by 
positive immune cells. This method is based on the pro-
posal for a standardized method from the International 
Immuno-Oncology Biomarkers Working group (Hendry 
et al. 2017).

Morphometric and computer‑assisted image analyses
TMA stained slides (HE, CD8, and PD-L1) were scanned 
at 40x magnification (Motic EasyScan Infinity 100 scan-
ner, Vancouver, CA) and analyzed by two pathologists 
independently using a semiquantitative score. Both 
pathologists also scored the tumors as low and high-
grade according to the current World Health Organiza-
tion Classification.

The files were loaded onto a project in QuPath software 
(QuPath source code, documentation, links to the soft-
ware download are available at https://​qupath.​github.​io). 
QuPath’s segmentation feature is able to detect thousands 
of cells, identify them as objects in a hierarchical manner 
below the annotation, TMA cores, or cases, and measure 
cell morphology and biomarker expression at the same 
time (Bankhead et al. 2017). The images were disarrayed, 
and all cores separated in a continuous fashion from 1 to 
140. The Cell Detection command was used to identify all 
cells in all cores based on the optical density of nuclear 

hematoxylin staining. Next, using selected measurements 
of intensity and morphology of all cells, applying a two-
way Random Trees Classifier to train QuPath interactively 
to distinguish tumor cells from the stroma and low-grade 
predominant from high-grade predominant tumor cores. 
This required drawing tumor cells by an experienced 
pathologist, and QuPath was able to provide immediate 
feedback across all tumors. Once the classification was 
adequate for training images,, the authors expanded the 
Classifier to identify all cells in all cores and estimate % 
of high-grade and low-grade carcinomas to compare o 
the original and confirmed pathologist classification. If 
the output from QuPath showed that high-grade cells 
were present in more than 10% of the tumor cells in each 
core, on a Excel spreadsheet, the tumor was considered 
high-grade by software analyses. We randomly selected 7 
high-grade and 3 low-grade carcinoma cases as a training 
set for the algorithm, annotated by one of the authors, to 
identify low-grade, high-grade tumor cells and stroma. 
The hypothesis is to evaluate if using only 7% of the cores 
(10/140), QUPath would be able to classify the remainder 
of the tumors in the TMA cores accurately.

For CD8 density measurements, a Simple Tissue Detec-
tion was performed to assess tissue area from each TMA 
core, followed by CD8 cell counts with the Positive Cell 
Detection command within the software (parameters for 
each command were fine-tuned by one of the authors). 
These measurements allowed the output of CD8 posi-
tive cells / mm2 of tissue. The corresponding script was 
then applied to all TMA cores, and data were exported 
to statistical analyses software (JMP, 2021 SAS Institute 
Inc). This evaluation of a CD marker in the TMA core 
has been previously described (Loughrey et  al. 2018). 
The output for this variable was the number of CD8+ 
cells per mm2, and it was compared with the analyses by 
a pathologist who blindly assessed each one of the cores 
and assessed a percentage semiquantitative score from 0 
to 100% (overall area involved by infiltrating or peritu-
moral CD8+ lymphocytes).

For PD-L1 scoring, analyses were run based on the 
trained algorithm described above, and quantification of 
cytoplasmic positive (mean DAB staining) only in cells 
detected as tumors cells, and not stroma and other cells. 
QuPath output was able to to identify numbero of PDL1 
positive cells/mm2 and, in addition, the H-score method 
was applied by the software, based on extent and inten-
sity of cytoplasmic staining (1-3), multiplied by the per-
centage of cells positive, with a potential score ranging 
from 0 to 300 (Bankhead et al. 2017). A pathologist score 
PD-L1 on each core using the established Tumor Propor-
tion Score (TPS) method. It was defined as the percent-
age of viable tumour cells showing partial or complete 
membrane PD-L1 staining at any intensity. Comparison 

https://qupath.github.io
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between pathologists’ analyses and the computer-assisted 
measurements were assessed by agreement scores.

Statistical analysis
CD8 and PDL1 data were evaluated using Spearman’s 
correlation and internal consistency analysis by calcu-
lating the interclass correlation coefficient. Addition-
ally, the kappa coefficient was calculated for the cut-off 
points (High vs Low). Cohen’s kappa ranged from − 1.0 
(total discordance) to + 1.0 (total concordance). Values 
between 0.6 to 0.8 are related to adequate concordance 
and 0.8 to 1.0 are related to strongly concordance. Values 
lower than 0.6 are considered inadequate concordance. 
In all instances, a confidence level of 95% was adopted 
(SPSS® v20.0 for Windows).

Results
Clinicopathological data
The cohort consisted of 140 patients, but 9 were imme-
diately excluded in the grade analyses due to a lack of 
tissue cores in the TMA histologic sections stained with 
hematoxylin and eosin (Fig.  1, 131 total, 105/76% male) 
with the mean age 74.2 years (57% over 75 years of age). 
Sections for immunohistochemistry did not have drop-
out cores, and all 140 cores were used for analyses (140 
cores total, mean age 71.4 years, 77% male). Per the origi-
nal pathology reports, there were 99 high-grade urothe-
lial carcinomas (75,5%) and 32 low-grade, which were 
confirmed by blind evaluation of each core by an expe-
rienced genitourinary pathologist. Per pathology reports, 
83 cases (59%) were invasive at least into lamina propria 

(all high-grade lesions), while 56 were non-invasive – 
this data was not confirmed on tissue cores due to the 
impossibility of assessing invasion in TMAs. Patients 
with low-grade tumors were younger (mean 68,6 years) 
compared to ones with high-grade tumors (mean 76, 
p = 0,0062). Patients with invasive tumors also were older 
(mean 76,1 years) than the ones with non-invasive (mean 
71 years, p = 0,036).

Cell detection
After dearraying the TMA and running a script to enu-
merate the tissue cores from 1 to 140, QuPath was able to 
treat each core as a separate unit in a hierarchical manner 
for output of data and measurements. One of the main 
basic functions of QUPath (and any surgical pathology 
analyses software for that matter) is to identify cells and 
calculate individual features. We run the Cell Detection 
command using hematoxylin optical density as the tar-
get for the nuclei, with 0,5uM pixel size and 3uM of cell 
expansion. Figure  2 shows one of the cores (#61) as an 
example. For this core, there were 30,204 cellular detec-
tions. More importantly, for each cell, the program can 
provide all measurements and export them to a spread-
sheet. If cell delineation is acceptable, Cell Detection 
can be run for all tissue cores. The median number of 
detected cells for all cores was 25,921 cells (range 3197-
64,144). A total of 3,283,282 cells were identified in 
all 131 cores. The authors used a Core i7 PC computer 
running Windows 10, with 16GB of RAM memory and 
a SSD hard disk of 512GB. For each TMA comprising 7 
cores, Cell Detection run for about 3 min.

Fig. 1  The two blocks in tissue microarrays comprising 140 cores (9 cores with missing tissue), after QuPath dearraying procedure. There 7 columns 
and 10 rows. A short script was run to rename the cores from 1 to 140. All the remaining cores had at least 200 tumor cells available for analyses



Page 5 of 11Rodrigues et al. Surgical and Experimental Pathology            (2022) 5:12 	

A helpful feature for researchers is the ability to distin-
guish between different cell types depending upon which 
measurements have been made and present them as a 
visual heatmap. Figure 3 shows an example (core #34) of 
a high-grade tumor with the map of the nucleus/cell area 
ratio output for each cell, and the heatmap for the entire 
block (cores 1-70) with the same measurement map. For 
the nucleus/cell area ratio, 1,791,467 cells were measured, 
with a mean of 0.289 (Std. Dev 0.077). In the figure, yel-
low represents high N:C ratio, while purple a lower one.

Automated tumor grade recognition
To train the software algorithm in recognizing tumor 
cells and differentiating cellular classes, 7 cases of high-
grade urothelial carcinomas (HG) and 3 cases of low-
grade urothelial carcinoma (LG) were annotated, as 
well as 4 distinct cases of non-tumor tissue (labeled 
“stroma” and representing non-tumor components such 
as fibroadipose tissue, desmoplastic stroma, or muscle 
bundles (Fig. 4, annotations from teaching cores). Within 
the training set, 4231 tumor cells in 7 high-grade cases, 
4906 tumor cells in 4 low-grade cases, and 8023 stroma 
cells were annotated. A script containing all procedures 
and steps in detecting and grading was saved, and run on 
all imported TMA images, thereby automating the detec-
tion and across slides, as previously described (Loughrey 
et  al. 2018). This is a particularly helpful feature of the 

program to increase reproducibility throughout different 
cases (Kilvaer et al. 2020; Humphries et al. 2018).

Using Random Trees classifier based on nuclear and 
cytoplasmic features (area, perimeter, circularity, caliper, 
nuclear eccentricity, hematoxylin optical density, eosin 
optical density (with means and variance) and nuclear to 
cell area ratio, we tested the algorithm in the first tissue 
block with 70 cases and made additional training correc-
tions. When the senior pathologist was satisfied, the clas-
sification was deployed to all tissue cores, creating a map 
of each of the thousands of cells. The data was exported 
to a spreadsheet. For each core, the output showed the 
number of high-grade, low-grade, and stroma-designated 
cells (red, blue, and green respectively, see Fig. 5). If high-
grade cells were assigned in more than 10% of the tumor 
cells for each core, the core was designated high-grade by 
the software. These results were compared to the grade 
assigned by the pathologist.

There was a good correlation between tumor grade by 
the pathologist and by QuPath software (Kappa agree-
ment 0.73). Interestingly, the algorithm was almost 
perfect in diagnosing high-grade tumors (98 out of 99 
tumors). The only high-grade tumor classified as low-
grade by QuPath was core #14. This core showed 19,552 
cells with low-grade prediction and only 2280 with 
high-grade prediction, thus making it a difficult case to 
classify. For low-grade carcinomas (by the report and 

Fig. 2  A, core 61 showing high-grade tumor with papillary formation. After Cell Detection, the software shows nuclei detected (red outlines) and 
cell expansion for each cell (Zoom in in C and D). For this core, there were 30,204 cellular detections. Panel E shows TMA cores 1 to 70 and with the 
blue square emphasizing #61
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Fig. 3  Nuclear to cell area ratio measurement heatmap. Panel A shows the HE section of n invasive papillary high-grade urothelial carcinoma 
(core #34), with the heatmap colored in each cellular detection (C). Towards purple means a lower N:C ration and to yellow a higher one. B and D 
are zoomed in areas of correspondent A and B images (blue squares). The heatmap views can be set for any of the output measurements. Panel E 
shows the histogram for all cells in the measurements by normalized values in the software

Fig. 4  Training annotations showing stroma (green line, panel A), high-grade urothelial carcinoma (green and yellow lines, panel B), low-grade 
urothelial carcinoma, panel C. On panel D, after the first colored heatmap output, the pathologist corrected the area mistakenly assigned as high 
grade (red)
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pathologist), the concordance was not as high. Of the 32 
low-grade tumors, 22 were correctly classified as low-
grade, but 11 (34%) were diagnosed as high-grade, with 
the high-grade to the low-grade ratio in these misclassi-
fied cases ranging from 0.41 to 0.58. The median ratio for 
bona fide high-grade carcinomas was 0.59. Some of the 
reasons the authors list as potential mimickers for high-
grade cases are fulguration artifact, nuclear hyperchro-
masia, folded tissues, and inconsistency in staining.

The software was also able to inform which were the 
cellular characteristics that were most important to pre-
dict between low and high-grade, in this order of impor-
tance (in parenthesis, the software provides a number of 
importance for each variable: (1) nucleus area(0.0805); 
(2) nuclear hematoxylin optical density mean (0.0705); 
(3) nucleus circularity (0.0679); (4) nucleus/cell area ratio 
(0.0645); (5) nucleus perimeter (0.0531); (6) cell area 
(0.460) and (7) cell minimum caliper (0.0460).

CD‑8 and PD‑L1 quantification
To validate the ability to count positive cells by immu-
nohistochemistry, the authors visually scored the pres-
ence of CD8+ cells within each core and assessed PD-L1 
tumor proportion score. These data were compared with 
the output by QuPath automated Positive Cell Detection 
and Tissue Detection. The chosen QuPath output for the 
CD8 quantification was density (cells/mm2), while we 
compared both density of PD-L1 positive cells and PD-L1 
H-score with the pathologists Tumor Proportion Score 
(TPS).

The correlation analysis between the software and the 
pathologist showed that the CD8 marker showed a mod-
erate (r = 0.595) and statistically significant (p < 0.001) 
correlation. The internal consistency of this param-
eter showed an index of 0.470. The correlation analysis 
between the software and the pathologist showed that 
the PD-L1 marker showed a robust (r = 0.834) and signif-
icant (p < 0.001) correlation. The internal consistency of 
this parameter showed a CCI of 0.851. When the H-score 
was considered for correlation and internal consistency 
analysis, the correlation was also very strong (r = 0.997) 
and significant (p  <  0.001) and the ICC was 0.919. The 
agreement showed a statistically significant kappa coef-
ficient (p < 0.001) of 0.724. These data are illustrated in 
Figs. 6 and 7.

Discussion
There is a strong need for accurate quantification of bio-
marker expression in tissue sections, both in the diagnos-
tic scenario and in the translational research workflows. 
While molecular techniques have revolutionized tissue-
based prediction and prognosis analyses, especially in 
lung, breast, and colon cancer, the basic surgical pathol-
ogy sections are cheap, and immunohistochemistry is 
widely available all over the world.

Digital analyses have overcome some problems of con-
ventional quantitative scoring by pathologists: capacity to 
evaluate thousands or millions of cells, higher reproduc-
ibility in the whole slide scanned images, and speed in 
evaluating multiple slides or cases in the research setting 
(Humphries et  al. 2018; Ram et  al. 2021; Morriss et  al. 

Fig. 5  Final representation of tumor grade heatmap in both TMAS (red is low grade, green is high-grade and stroma (non-tumor tissue) is green)



Page 8 of 11Rodrigues et al. Surgical and Experimental Pathology            (2022) 5:12 

2020; Oh and Mahalingam 2019). Another issue with vis-
ual semi-quantitative is the short dynamic range of many 
systems. The Allred method used in breast cancer assigns 
scores for intensity (0-3) and percentage of cells (0-5), for 
example, has a range of 0-8, compared to the output of 
digital analyses that can yield output of decimals or the 
more commonly used H-score (0-300) (Meyerholz and 
Beck 2018; Favresse et al. 2018; Vougiouklakis et al. 2020; 
Yang et  al. 2019). In the past few years, several studies 
have compared tissue expression evaluated by patholo-
gists and digital algorithms, and more importantly, com-
pared digital with mRNA transcripts and proteomics, 
underscoring the power of tissue-based protein quantifi-
cation in research and patient’s outcomes (Lu et al. 2022; 
Junger et  al. 2020; Levy-Jurgenson et  al. 2020; Officer 
et  al. 2020). Ram et  al. quantified protein expression 
(P-cadherin, PD-L1, and 5 T4) and showed a high con-
cordance with both mRNA transcripts and pathologists 
assigned H-score (Ram et al. 2021). Levy-Jurgenson et al. 

used a similar approach in an elegant study and used 
deep-learning algorithms to quantify tumor heterogene-
ity with excellent correlation with survival by the way of 
mRNA and miRNA expression from whole-slide images 
(Levy-Jurgenson et al. 2020).

While other studies have attempted to validate the 
use of software and compare with real-life pathologist 
diagnoses, especially using tumor infiltrating lympho-
cytes and PD-L1 expression (Hendry et al. 2017; Amgad 
et  al. 2020; Corredor et  al. 2018; Klauschen et  al. 2018; 
Lu et al. 2019; Udall et al. 2018) the current manuscript 
is intended to prove something more subtle, but practi-
cal, that is, the ability of pathologists with no previous 
training to use a platform to quantify and compare mor-
phometric data. None of the authors had experience in 
scripting, coding, or had a background in computer sci-
ences. Bankhead tested the performance of QuPath in 
colon cancer samples using tissue microarrays and quan-
tified p53, PD-L1, and CD8, elegantly showing the power 

Fig. 6  Original IHC staining for Core #119 showing CD8 in low power (A) and colored by the software (red is positive and blue is negative, B), and 
a high-power region (C and D). Panels E, F, G and H are from teh same core stained with PD-L1 (the color outputs are blue for negative, yellow for 
weak positivity, orange for moderate positivity and red for strong positivity). These scores are used in calculator the H-score

Fig. 7  Correlation analysis and internal consistency of immunoexpression for CD8 and PDL1 using an algorithm. *p < 0.001, Spearman correlation
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of the software in predicting patients’ survival (Bankhead 
et al. 2017).

The utility of assessing PD-L1 in urothelial carcinoma 
in predicting immune checkpoint inhibitor therapy has 
been established recently with strong supporting data 
(van der Heijden et  al. 2021; Sotelo et  al. 2021; Balar 
et  al. 2017). However, intratumoral heterogeneity in 
PD-L1 expression may explain some of the controver-
sies and lack of consensus (Weyerer et  al. 2021). Five 
different anti- PD-1 (durvalumab, nivolumab and pem-
brolizumab) or anti-PD- L1 antibodies (atezolizumab 
and avelumab) are approved by the FDA for patients 
with locally advanced urothelial carcinoma. In addi-
tion, the complexity of the tumor immune environment 
can not be established for a positive/negative threshold 
for PD-L1 expression alone (pembrolizumab: combined 
positive score, CPS, cut-off = 10%; atezolizumab: immune 
cell score, cut-off = 5%; durvalumab: tumor cell area/ 
immune cell area algorithm, cut-off = 25%). Therefore, 
and other predictors such as evaluation, subtyping and 
quantification of infiltrating lymphocytes have been pro-
posed (Gevaert et al. 2021).

In the current manuscript, we were able to assess 
CD8+ infiltrating lymphocytes in a moderate-sized 
cohort of both low-grade and high-grade urothelial car-
cinoma with good agreement between the pathologist 
assessment using % of the area (in the cores) and QuPath 
quantification of the number of cells/mm2. According to 
Weyerer et al., little is known about the meaning of dif-
ferential PD-L1 expression on tumor and immune cells, 
regarding response to therapy, especially in therapy-naïve 
patients (Weyerer et al. 2021). Follow-up and treatment 
information is not available for our cohort, and this may 
be the great weakness of the paper. However, the main 
objective was to validate a way of measuring and not 
establish scientific correlations per se.

Currently, several drug-specific algorithms in immu-
notherapy are in use worldwide and, while there are 
attempts at standardization, there is differential sensitiv-
ity of the assays, distinct protocols for tumor types, and 
multiple choices of drugs from the oncologists’ point of 
view. Thus, surgical pathologists face daily challenges in 
choosing which clone to use and how to score (tumor 
cells, immune cells, combined scores, etc.) (Udall et  al. 
2018; Tsao et al. 2017; Doroshow et al. 2021).

Evaluating tumor immune microenvironment is puz-
zling, since tissue samples are usually limited, and just 
a static representation of a dynamic and ongoing pro-
cess. To better understand the interplay between dif-
ferent cells, one approach has been to use multiplex 
immunohistochemistry with the benefits of utilizing 
several epitopes to study cellular compositions and rela-
tions, concurrently quantifying, and locating tumor 

microenvironment (Tan et al. 2020; Viratham Pulsawatdi 
et  al. 2020). Xie et  al. used a tri-chromogen multiplex 
IHC and immunofluorescence protocols to characterize 
immune markers in high-grade urothelial carcinoma and 
utilized QuPath for immune infiltrate quantification and 
found good correlation between multiplex and singleplex 
IHC and between multiplex and manual scoring (Xie 
et al. 2021).

The methodology in this study included use of TMAs, 
training the algorithm to recogonize cores with pre-
dominantly low and high-grade morphologies, inden-
tify and quantify PD-L1 expression withing tumor cells 
and calculate CD8 positive cell density within the cores. 
The use of the random trees classifier protocol to train 
and test the algorithm have been attempted with results 
prior (Loughrey et al. 2018; Bankhead et al. 2017). In our 
cohort of bladder cancer, the morphologic features that 
allowed best distinction between tumor grade are simi-
lar to the ones used routinely by pathologists in assigning 
malignancy in a subjective way: nuclear size and hyper-
chromasia (nucleus area and optical density), nuclear 
circularity, nuclear perimeter, nuclear to cytoplasmic or 
cell ration and cell area. This feature was complemented 
with the validation of the calculation of cell density calcu-
lated by the identification of DAB positive cells (CD8 and 
PD-L1), and since PD-L1 is a marker that can mark both 
tumor as well as immune cells, after tumor cell identifica-
tion training, the calculation was based only in tumor cell 
morphology positive for PD-L1. Both had very good cor-
relation with the current state of the art, which is analy-
ses by experienced pathologists either using immune cell 
density expressed by percentage of area, or percentage of 
tumor cells positive for PD-L1 such as the Tumor Pro-
portion Score.

In conclusion, we were able to demonstrate the util-
ity of QuPath in identifying and scoring tumor cells and 
IHC quantification and showed in a step by step manner 
the directions of using the program in a very basic way. 
The goal was to illustrate with images an easy way to use 
this free platform with little experience in programming 
or even in digital pathology. With the increasing avail-
ability and decreasing costs for whole slide scanning 
hardware, the chance of using a software in both research 
and diagnostics are hopefully reproducible and will yield 
large amounts of data and biomarker finding (Deroul-
ers et al. 2013; Huang et al. 2021; Ryu et al. 2019). In the 
post-pandemic world, we hope and expect that the use of 
digital images and quantification will be used widely in 
both clinical diagnoses and research, as these have been 
validated in many centers (Huang et al. 2021; Hanna et al. 
2020).
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