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CASE REPORT

Monocytosis and Multiple Myeloma: 
treatment‑related acute leukaemia?
Cristina Veronica Trinidad Esparza1, Maria J. Lizardo‑Thiebaud1, María Graciela Leal‑Gutierrez2, 
Beatriz Sánchez‑Hernandez1 and Daniel Montante Montes de Oca1* 

Abstract 

Background:  Therapy-related acute monocytic leukemias in patients with plasma cell dyscrasias are infrequent.

Case presentation:  We here present a case of a 60 year old female who developed an acute monocytic leukemia 
two years after the diagnosis of multiple myeloma. She was treated with an alkylating agent and bortezomib before 
undergoing a hematopoietic stem cell transplantation. She suffered of multiple severe infections until her immune 
system was adequately reconstituted. A year afterwards, she presented signs of deterioration unrelated to the MM, 
with pancytopenia. The bone marrow aspirate failed to show a prominent blast population. The diagnosis of AML was 
confirmed after a bone marrow biopsy.

Discussion:  The development of acute leukaemia after treatment for multiple myeloma is a well characterized 
phenomenon. Most frequently, patients develop a myelomonocytic leukemia. Similarly, synchronous acute myeloid 
leukemias are myelomonocytic or myeloblastic. Rarely synchronous AMLs are monocytic. The development of such 
suggests a dysfunctional bone marrow microenvironment.
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Background
Multiple myeloma (MM) is a clonal and multifocal neo-
plastic proliferation of plasma cells (PCs) (McKenna 
2017). It is a clinicopathological diagnosis. According 
to the revised International Myeloma Working Group 
criteria, the diagnosis of MM is made when: 1) bone 
marrow plasma cells are more than or equal to 10% or 
there is a plasmacytoma confirmed by biopsy in bone or 
extramedullary tissue, and 2) it is accompanied by MM 
defining events such as: a) end organ damage due to the 
proliferative disorder or/and b) identification of biomark-
ers including a light chain serology and imaging studies 
(Kumar et al. 2017; Vincent Rajkumar et al. 2014).

With these criteria in mind, the reported annual inci-
dence varies by country. Its annual incidence is higher in 
more-developed countries (Kumar et  al. 2017). Reports 
on Latin America identify MM as second to non-Hodg-
kin lymphomas in prevalence. The prevalence in Mexico 
is of 27.1% as of 2019. The mean age at diagnosis is of 
60 years of age. Contrary to patients in more-developed 
countries, patients diagnosed with MM in Latin America 
often have comorbidities at diagnosis, the most frequent 
being chronic metabolic diseases. Despite an increase in 
diagnostic techniques and survival rates, patients in Latin 
America present with advanced disease, with an Interna-
tional Scoring System at diagnosis of III (de Moraes Hun-
gria et  al. 2020; Tietsch de MoraesHungria et  al. 2006; 
Hungria et  al. 2017; Hungria et  al. 2019; Vargas-Serafin 
et al. 2021).

Myelomagenesis is characterized by genetic and epige-
netic alterations, clonal evolution and the interplay of the 
microenvironment and the neoplastic plasma cells. It is 
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a long process that includes chromosomal translocations 
affecting genes, including IGH, aneuploidy, hypermeth-
ylation of DNA as well as acquired mutations that allow 
tumor progression (Kumar et al. 2017).

Treatment for MM patients is determined by two vari-
ables: eligibility for autologous hematopoietic stem cell 
transplantation (AHSCT) and risk stratification. Initial 
therapy for those eligible for AHSCT include borte-
zomib, lenalidomide, dexamethasone (VRd) and, alterna-
tively, daratumumab, lenalidomide, and dexamethasone 
(DRd). For those ineligible for AHSCT, VRd and DRd are 
recommended, discarding melphalan-based regimens 
due to concerns on stem cell damage, secondary myelo-
dysplastic syndrome, and acute leukemia. Nonetheless, 
the preferred treatment for conditioning for AHSCT in 
those classified as high risk is melphalan. On the other 
hand the treatment of choice for relapses depends on 
many factors, the first of which is refractoriness to lena-
lidomide followed by the timing of the relapse, response 
to prior therapy, aggressiveness of the relapse, and per-
formance status. For patients who are not refractory to 
lenalidomide, multiple triplet regimens are considered. In 
patients who are refractory to lenalidomide, options for 
therapy at first relapse consist of several pomalidomide- 
based or bortezomib-based combinations (Rajkumar and 
Kumar 2020).

In Latin America, the three most used chemotherapy 
treatments in patients who received an AHSCT include 
a Thalidomide-based treatment, a Bortezomib-based 
treatment and a combination of cyclophosphamide, tha-
lidomide and dexamethasone (CTD). Patients who do 
not receive a bone marrow transplantation most often 
receive either a thalidomide-based treatment, melpha-
lan, thalidomide plus steroid or melphalan plus steroid. 
In Mexico, both, patients who receive AHSCT and those 
who do not, are often treated with a thalidomide-based 
therapy (Hungria et al. 2019).

Experience demonstrates that many Latin American 
countries have not been able to add novel agents as first-
line therapy against MM. Likewise, from those eligible 
for transplantation, around half undergo AHSCT. Thus, 
the overall survival rate of both eligible and non-eligible 
AHSCT patients can be further increased with addition 
of novel therapies.

Although the most relevant problem in Latin America 
is not therapy-related complications but logistics, con-
sidering the increasing survival rate Latin America has 
demonstrated in the last few years (Hungria et al. 2017; 
Hungria et al. 2019), the former is probably the focus of 
years to come.

Leukemia is the most frequent therapy-related malig-
nancy (Higgins and Shah 2020; Leone et  al. 2001). 
Its incidence has increased as a product of a longer 

life expectancy and higher rates of survivorship. 
Therapy-related myeloid neoplasms (t-MN) include 
therapy-related acute myeloid leukemia (t-AML), mye-
lodysplastic syndromes (t-MDS), and myelodysplastic/
myeloproliferative neoplasms (t-MDS/MPN) (Arber 
2017). They are secondary to the use of alkylating 
agents or the use of topoisomerase inhibitors (Leone 
et  al. 2001). The latency varies but it is usually after 
years of treatment; for MM, most have reported more 
than two years of treatment (Higgins and Shah 2020; 
Mailankody et al. 2011). The dose, age and addition of 
radiation are considered risk factors. In t-MNs second-
ary to therapy with alkylating agents, AML is preceded 
by a myelodysplastic syndrome (MDS) and the latency 
is of 5 to 10 years (Arber 2017; Nadiminti et al. 2021). 
The effects these drugs have on the DNA have been the 
accepted explanation since first described. However, 
individual predisposing factors have been better char-
acterized with time, making this entity another exam-
ple, though more precocious, of the sum effect of the 
hallmarks of cancer (Higgins and Shah 2020).

As for plasma cell neoplasms, t-MNs are increas-
ingly recognized as long-term complications, including 
alkylating chemotherapy, specially melphalan (Leone 
et  al. 2001). Reddi et  al. demonstrated that complex 
abnormalities and -5q / -7q cytogenetic abnormalities 
were present in 79% of their patients with MM and later 
t-MN having a direct correlation with the use of melpha-
lan-based chemotherapy regimens, with the highest risk 
for regimens melphalan-cyclophosphamide combina-
tions (Reddi et al. 2012). Observational studies of hema-
tological malignancies have shown an increased risk of 
MNs after autologous transplantation with intravenous 
melphalan-based conditioning (Radivoyevitch et  al. 
2018). The five-year cumulative incidence of t-MN after 
transplantation and maintenance with lenalidomide is 
0.7% (Jones et al. 2016). Likewise, post-transplant main-
tenance with drugs derived from thalidomide such as 
lenalidomide, also increase the risk of t-MN and MDS as 
it magnifies the risk due to previous exposure to oral mel-
phalan. According to a meta-analysis by Palumbo et  al., 
the combination of lenalidomide plus oral melphalan 
significantly increased the risk of hematological second 
primary disease (HR 4.86 [95% CI: 2.79– 8.46]) (Palumbo 
et al. 2014). So far, there is no clear data to support the 
increased risk of MPD or t-MN with the use of borte-
zomib (Leone et al. 2001; Reddi et al. 2012; Radivoyevitch 
et al. 2018; McNerney et al. 2017; Gertz et al. 2015).

Since first described, the most frequent t-MN in MM 
patients are both acute myeloblastic and acute myelo-
monocytic leukemia (Leone et al. 2001; Kyle et al. 1970; 
Bierbach et al. 1979). We here present a case report high-
lighting a t-MN with a distinct phenotype.
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Case presentation
A 60 year old female patient was referred to our Institute 
after a monoclonal gammopathy was identified. She had 
no relevant past medical nor social history. The patient 
presented weight loss, back pain, weakness and fatigue, 
night sweats, and pallor. Complete blood count (CBC) 
showed severe anemia, leukopenia and thrombocytope-
nia, as well as, hypercalcemia, alterations in renal func-
tion and the presence of Bence Jones protein in urine. 
The imaging studies showed generalized lytic lesions and 
several pathologic fractures. Measurement of antibodies 
showed hypergammaglobulinemia with lambda restric-
tion. The bone marrow aspirate (BMA) demonstrated 
infiltration by plasmatic cells in 80% and the bone mar-
row biopsy showed a diffuse infiltration of the inter-
stitium by neoplastic plasmatic cells with light chain 
restriction (Fig.  1). The neoplastic population was posi-
tive to CD138, CD38 and CD56. Multiple myeloma was 
confirmed.

She was treated with six cycles of cyclophosphamide, 
bortezomib and dexamethasone. The last cycle was mod-
ified to thalidomide, bortezomib and dexamethasone. 
During the chemotherapy, she developed several severe 
infections, including latent tuberculosis, bacteremia due 
to Streptococcus mitis, and persistent Clostridioides dif-
ficile infection (four relapses in total). After a dose of 
melphalan, she received an AHSCT after 6  months of 
treatment.

The following years, she continuously developed severe 
infections including a disseminated infection with Myco-
bacterium avium and a urinary tract infection by ESBL 
producing E. coli. There were no clinical nor serological 

signs of residual disease. However, the patient endured 
with anemia and a mild leukopenia.

Two years after the AHSCT, she developed bleeding 
gums, epistaxis, petechiae, and ecchymoses. She also 
referred weakness, fatigue, headaches, bone pain and 
weight loss. The patient arrived at the emergency depart-
ment due to symptoms and signs of heart failure, which 
was discarded. The CBC showed a pancytopenia, with 
hemoglobin of 9.7  mg/dL, white blood cells of 2,270 
and platelets of 31,000. The pancytopenia could not be 
explained by chronic infections. She was hospitalized for 
diagnostic work up.

There were no serological signs of relapse of multi-
ple myeloma. The imaging studies did not identify any 
changes. A BMA was performed and showed a homog-
enous population of cells measuring approximately 16 
um, with basophilic cytoplasm, irregular nuclei, some 
bean-shaped, with one or two nucleoli. This population 
accounted for 22% of the cells. The cytomorphology 
proved compatible with immature hematopoietic cells. 
However, the immunophenotype did not show a clonality 
for monocytes.

A bone marrow biopsy was performed, which showed 
a cellularity of 70% with 50% of the cells characterized 
by a larger size, with abundant cytoplasm, an indented 
nuclei with vesicular chromatin, distributed at the inter-
stitium (Fig.  2a-b). The rest of the hematopoietic popu-
lation showed no features of dysplasia; no myeloid blast 
cells were observed. Plasmatic cells were identified with 
mature morphology and a perivascular distribution. The 
immunohistochemistry showed the neoplastic cells were 
positive for monocyte-specific antigens (Fig. 2c-f ).

Fig. 1  a Bone marrow with diffuse Interstitial infiltration of mature and immature plasma cells (H&E 4x); b Plasmatic cell detail, round eccentric 
nuclei with cart-wheel chromatin and variable nucleoli (in set), with abundant basophilic cytoplasm (H&E 20x, 40x)
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A new BMA was performed, this time demonstrat-
ing maturation arrest in myeloid cells, a 28% blast cell 
count, with the following immunophenotype: CD64 + , 
CD15 + , CD13 + , CD33 + , CD4 + (Fig. 3). No complex 
cytogenetics were identified. Mutations for IDH, CBF-
beta, FLT3 and NPM1 were negative. Thus, a diagnosis of 
acute monocytic leukemia was made.

Analysis of mutations in TP53 were done taking DNA 
from both the bone marrow biopsy where the diagnosis 
of MM was confirmed and where the AML was diag-
nosed three years afterwards. A Sanger sequencing was 
used to identify mutations in exons 5 to 10. A non-sense 
mutation in exon 6 was identified in the plasmatic cell 
neoplasm; no mutations were identified in the myeloid 
neoplasm.

The patient received chemotherapy based on Veneto-
clax and cytarabine; however, the disease progressed sub-
stantially. She has experienced multiple severe infections 
and constantly requires transfusions. She is now in pallia-
tive care.

Discussion and conclusions
We performed a thorough search for simultaneous 
and treatment-related acute monocytic leukaemias in 
patients with MM. A total of 28 case reports and case 
series were retrieved; after examining the criteria used 

for classifying the acute myeloid leukaemia, the articles 
were narrowed to 16, with 13 case reports and 2 case 
series, with a total of 23 patients (Table 1).

From the twenty-three cases retrieved, five were t-MNs 
and fifteen were simultaneous MNs (Kyle et  al. 1970; 
Bierbach et al. 1979; Raz and Polliack 1984; Akashi et al. 
1991; Kim et al. 2010; Shi et al. 2015; Levinson et al. 2002; 
Osserman 1971; Naparstek et  al. 1982; Luca and Alma-
naseer 2003; Marcović et  al. 1974). All of the reported 
M5’s had a monocytic phenotype, unlike the simultane-
ous M5, with three of them having a monoblastic phe-
notype. Interestingly, none of the t-MNs had a medical 
history of hematological disorders, opposite to the cases 
of synchronous MM and AML M5, with several report-
ing myelodysplastic disorders.

Most of the patients in both groups were men. They 
had a median age of 68.5 when diagnosed with MM, and 
most had an IgG kappa gammopathy, with few having 
IgA or IgM. As for the treatments received, all the t-MNs 
received at some point melphalan, in combination with 
cyclophosphamide, steroids and/or radiotherapy. Com-
parable to our patient, a common finding was monocyto-
sis in the CBC. All the patients had a dismal evolvement.

The clinical presentation in cases with synchronic MM 
and AML included non-specific symptoms (weakness, 
fatigue, pallor and weight loss). A common finding in the 

Fig. 2  a Hypercellular bone marrow with interstitial distribution of monocytoid cells and perivascular mature cells; b Monocytoid cell detail; c 
CD163 ( +) d CD68 ( +) e lysozyme ( +) f CD117 (-)
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CBC was anemia, sometimes accompanied by thrombo-
cytopenia. Analogous to t-MNs, monocytosis was the 
rule; and, despite treatment, patients deteriorated rapidly.

Though the first t-MN reported in the literature was 
made by professor Elliott F Osserman on 1967, who for 
years studied MM among other hematological diseases, 
pure acute monocytic leukaemias secondary to treat-
ment are very few (Kyle et  al. 1970). Osserman was the 
first to suggest that development of a leukemic clone in 
patients with MM may be due to therapy or due to recur-
ring infections. In the same line, MM may impose a 
decreased immune surveillance and, consequently, AML 
may develop. The simultaneous presentation of MM and 
AML has raised the possibility of a proximate ontoge-
netic relationship between plasmatic cells and myeloid 
cells (Osserman 1971; Naparstek et  al. 1982; Luca and 
Almanaseer 2003). In fact, an isolated case report con-
firmed the biphenotype of the myeloid cells and the mye-
loma cells of a 77 year old male patient with simultaneous 
MM and AML. The myeloid cells isolated from periph-
eral blood showed expression of B cell markers (CD10 in 
95% while CD20, CD19 and CD21 were < 5%) and T cells 
markers. Through immunohistochemistry, they found 
some myeloid cells staining positive for IgG. With elec-
tronic microscopy, they visualized hybrid myeloid cells 

with abundant endoplasmic reticulum and MPO-positive 
granules. The purified CD14+myeloid cells also presented 
JH gene rearrangement, identical to the one found in the 
isolated myeloma cells. The in vitro culture systems pro-
vided evidence of the bi-lineal differentiation capacity of 
the myeloid cells. They suggest that aberrant expression 
of lineage-specific genes might be involved in the devel-
opment of simultaneous hematologic neoplasia, like MM 
and AML (Akashi et  al. 1991). However, most evidence 
shows no clonal relationship. Simultaneous leukemic 
clones probably arise from the interplay of genetics and 
a disturbed microenvironment (Higgins and Shah 2020; 
Klimkowska et al. 2021).

The genomic heterogeneity of t-MN is a product of a) 
the cytotoxic agent employed for treatment of the prior 
neoplasm, b) the age of the patient and c) the presence of 
a clonal hematopoiesis before exposure to the cytotoxic 
agent (Higgins and Shah 2020). For instance, alkylat-
ing agents like Melphalan and cyclophosphamide are 
strongly associated to mutations in genes like TP53 and 
PPM1D, which are commonly mutated in t-MN. None-
theless, evidence shows bone marrow cells accumulate 
mutations with time (Higgins and Shah 2020). TP53-
mutated clones may be found ancestral to t-MN. The 
selective advantage this mutation poses to cells may be 

Fig. 3  Bone Marrow Immunophenotypic Analysis. a Blast Cells Analysis (CD45 low) solely 0.3%, not meeting criteria for acute leukemia. a.1 Blast do 
not express T o B lymphocyte markers. a.2 Expression of myeloid markers (CD 117 + , CD13 +), also expressed by monocytic lineage. b Monocytes 
Analysis (CD45 high): Promonocytes (CD64 high, CD14 Neg) and monoblast (CD64 Neg, CD14 Neg) prevalence, both considered blast equivalent
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further enhanced by the PPM1D mutation generated by 
chemotherapy, which is found in 3.3% of t-MN associ-
ated to MM (Higgins and Shah 2020; Mouhieddine 2018; 
Wong et al. 2015). Our case did not present mutations in 
TP53.

The presence of clonal hematopoiesis (CH) becomes 
pivotal in the understanding of t-MN and MM. Stud-
ies have found that a fifth of patients with MM have CH 
at the time of ASHCT (Mouhieddine 2018; Maia et  al. 
2020). Clonal hematopoiesis of indeterminate potential 
(CHIP) is defined by clonal hematopoiesis with absence 
of hematopoietic dysplasia and absence of increased 
blast cells in the bone marrow. The requirements for CH 
include the demonstration of a somatic mutation with 
a variant allele frequency of between 2 and 10%. The 
most frequent mutations are those also found in MN: 
DNMT3A, TET2, ASXL1. In the same line, the most 
common hematologic neoplasia associated with CH are 
myeloid neoplasms. Though it increases in prevalence 
with age, the absolute risk of developing a hematologic 
neoplasia is low (Heuser et al. 2016). External factors like 
radiation, chemotherapy, or environmental toxics might 
be factors that accelerate the progression from CHIP to 
dysplasia to leukemia.

A decent explanation to how both AML and MM may 
develop synchronous or metachronous to one another is 
the establishment of a permissive bone marrow micro-
environment (Ghobrial et  al. 2018; Li 2017; Kawano 
et al. 2013). Studies have shown mesenchymal stem and 
progenitor cells contribute to the survival and growth 
of myeloma cells and the maintenance of the myelodys-
plastic phenotype in MDS (Ghobrial et al. 2018; Li 2017; 
Calvi 2019). By secreting specific cytokines (including 
IL-6, VEGF, TGF-beta) stromal cells enhance the survival 
of both neoplastic populations and regulate the tumor 
immune response. Indeed, the immunosuppressive 
microenvironment set by the neoplastic cells may foster 
the development and/or progression of other hemato-
logical malignancies. In the setting of MM, antigen pres-
entation and humoral response are ineffective. There is 
an increase in immunosuppressive cell types including 
Treg cells and myeloid-derived suppressor cells (Ghobrial 
et al. 2018; García-Ortiz et al. 2021; Zavidij et al. 2020). 
Gene expression studies have shown T cell populations 
have a more exhausted state (Ghobrial et  al. 2018; Ryu 
et al. 2020). As for myeloid neoplasms, most data suggest 
genetic and epigenetic mechanisms are the main factors 
involved in their development. However, animal studies 
have shown homeostasis in the bone marrow microen-
vironment prevents the development of MNs (Li 2017; 
Calvi 2019).

Another consideration is that made by Osserman. 
The constant activation of immune cells due to chronic 

infections might help select clones with particular muta-
tions. Infections in patients with MM is a common com-
plication and it has been associated to relapse in disease, 
higher burden of PCs in bone marrow, presence of ane-
mia, and neutropenia in the context of AHSCT (Brioli 
et al. 2019). The susceptibility to infections derives from 
an interplay among age, disease and therapy-associated 
factors that alter the immune response (Nucci and Anais-
sie 2009). Most of the infectious agents are bacteria, indi-
cating a deficient innate immune response as well as a 
humoral immune response.

Immune dysregulation has become a constant compo-
nent in MNs, specifically MDS. There is a pro-inflamma-
tory environment in the MDS bone marrow: pathogen 
recognition receptors and pro-inflammatory cytokine 
receptors are over-expressed and DAMPs are constantly 
secreted. This pro-inflammatory environment leads to 
genotoxic stress, which may contribute to the genomic 
instability in MDS (Li 2017; Calvi 2019).

Monocytosis is uncommon in MM. Considering most 
t-MN are preceded by MDS, which is characterized by 
cytopenia, the finding of increased numbers of mono-
cytes in peripheral blood might not only suggest the 
presence of a chronic infection but also of an incipient 
myeloid neoplasm.

According to the WHO classification of tumours of 
hematopoietic and lymphoid tissues, cases of t-MN pre-
sent within 10  years of exposure to the therapy, have 
multilineage dysplasia, have no specific immunophe-
notype and present a complex karyotype, with abnor-
malities in chromosomes 5 or/and 7 and mutations in 
TP53 (Arber 2017). The immunophenotype coincides 
with the de novo counterparts, though blasts are usually 
CD34 positive and express myeloid antigens CD13 and 
CD33. To consider, thus, a monocytic leukaemia, more 
than 80% of the blasts in the bone marrow or peripheral 
blood are a combination of monoblasts, monocytes and 
monocytes. Their morphology is quite characteristic, 
with promonocytes and monocytes having convoluted 
nuclei and azurophilic granules in their cytoplasm. All 
three stages of maturation generate non-specific ester-
ase reaction. Flow cytometry shows positivity for CD13, 
CD33, CD65, C15 and at least two markers of mono-
cytic differentiation (CD14, CD4, CD11b, CD11c, CD64, 
CD68, CD36, and lysozyme) (Weir and Borowitz 2001; 
Peters and Ansari 2011). Immunohistochemistry shows 
positivity for lysozyme, CD68 and CD163. They have 
no specific genetic profile, except those presenting with 
erythrophagocytosis.

Without a TP53 mutation, the acute monocytic leukae-
mia our patient developed might be a de novo myeloid 
neoplasm. Establishing whether our case is a t-MN or not 
may not have a clinical impact but it confirms what studies 
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have found in the pathophysiology of myeloid neoplasms: 
the bone marrow microenvironment plays a cardinal role 
in the homeostasis of precursor cells.

With the advent of new chemotherapeutics, multi-
ple myeloma has become a chronic condition. Ther-
apy-related myeloid neoplasms are therefore a newly 
found complication, with myelodysplastic syndrome 
and acute myeloid leukemias being the most prevalent. 
Monocytic phenotype is rarely encountered as a t-MN 
and infections must be thoroughly discarded. An inte-
gral diagnostic approach is key for diagnosing an acute 
monocytic leukemia in the context of therapy-related 
myeloid neoplasms. This must include phenotyping 
via flow cytometry, the morphologic characteriza-
tion through biopsies and the genotyping of specific 
mutations.
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