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Abstract 

Urologic pathology is rapidly evolving to adopt growing knowledge of molecular pathways involved in genitourinary 
neoplasm. Many prognostic and predictive biomarkers are under active research and some of them have been incor‑
porated in clinical practice. In this review, we will discuss recent developments of Molecular Pathology of prostate, 
bladder and testicular tumors with special emphasis on prognostic and predictive biomarkers.
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Introduction
In recent years, the practice of anatomic pathology 
has experienced significant changes, in part due to the 
widespread adoption of diagnostic and prognostic bio-
markers, both circulating and tissue-based. Specifically, 
implementation of molecular assays and novel immuno-
histochemical markers (such as mutation-specific and 
fusion protein-specific antibodies) has led to the identi-
fication of new entities with distinct biologic and clini-
cal features, resulting in changes in tumor classification 
across different subspecialties of oncologic pathology. 
Routine assessment of biomarkers has also had sub-
stantial impact on clinical management, since many of 
them are accurate predictors of disease-specific or dis-
ease-related outcomes (prognostic biomarkers) and/or 
response to specific treatment modalities.

The booming field of biomarker research has identified 
some with proven clinical value, which have already been 
incorporated into routine practice, as well as others with 
promising diagnostic or prognostic performance that 
are likely to enter the clinical arena in the near future. 
However, much of the research data produced over the 
last few years pertains to biomarkers that are purely 
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experimental and of unknown clinical value. The amount 
of information on biomarkers can be overwhelming, 
being difficult to parse out what is truly relevant. In this 
review article we include a curated selection of diagnos-
tic and prognostic biomarkers, highlighting those that 
are clinically relevant. Of note, some of them are well-
established, whereas others are emerging and, therefore, 
not entirely validated. The objective is to present the 
reader with information useful for daily clinical practice 
and provide future perspectives in the field of oncologic 
uropathology.

Prostate cancer
In recent years, active surveillance has become the man-
agement of choice for patients with very low risk and low 
risk prostate cancer, being increeasingly considered a via-
ble option for selected patients with favorable-interme-
diate risk disease. Biomakers with predictive value may 
further refine risk assessment within these categories, 
helping clinicians to adopt treatment strategies tailored 
to individual patients. Given their impact on clinical 
practice, some predictive biomarkers such as PTEN, Ki67 
and mRNA-based gene expression signatures will be dis-
cussed below.

In the scenario of advanced disease, biomarkers of 
defects on DNA repair pathways, androgen receptor 
signaling, and neuroendocrine differentiation are the 
most important in current practice. The first identifies 
patients who may benefit with Poly (ADP-ribose) poly-
merase (PARP) inhibitors (PARPi) and the latter may 
prompt the clinician to switch anti-androgen therapies 
toward chemotherapy or enrollment in clinical trials.

Biomarkers in the scenario of active surveillance 
and localized prostate carcinoma
Most patients diagnosed with prostate cancer have a 
low-grade, Gleason 6 (3 + 3), grade group (GG1), organ-
confined acinar adenocarcinoma. Most of these patients 
will benefit from the adoption of active surveillance, 
an option that avoids or postpones definite treatment 
(and their complications) for years before disease pro-
gresses to a higher-risk condition requiring intervention. 
Active surveillance has gained ground in clinical practice 
and is usually selected as the best option depending on 
patient´s personal preference, clinical data, PSA serum 
levels / density and absence of higher-grade component 
(no Gleason pattern 4 or 5) in biopsy specimens. Active 
surveillance may also be included as an option in selected 
cases, or in some centers for adenocarcinomas Gleason 
3 + 4 (GG2) with low volume of high-grade component 
and absence of cribriform morphology or intraductal car-
cinoma (Klotz et al. 2015).

The current scenario, however, may still be biased in 
favor of overtreatment. As for 2018, the US task force 
estimated that for each 1000 men undergoing PSA 
screening, 240 will have serum elevated levels, 100 a pos-
itive biopsy and 80 will eventually be treated with a defi-
nite treatment. This picture results in avoiding death in 1 
man and metastatic disease in 3, while 5 men would die 
of disease despite treatment, and 50 and 15 men would 
live with erectile dysfunction and urinary incontinence 
after treatment, respectively (Grossman et al. 2018).

In a scenario in which both active surveillance and defi-
nite treatment are considered, additional tools for risk 
stratification are needed to safely discuss with patients 
their best option. Many tissue-based prognostic factors 
have been studied in this scenario including immunohis-
tochemical markers, mRNA-based genomic signatures 
and proteomics.

PTEN immunohistochemistry
PTEN (Phosphatase and tensin homolog) is one of the 
most frequently inactivated tumor suppressor genes in 
human cancers. PTEN protein acts as a lipid phosphatase 
opposing the PI3K/AKT signaling pathway. In prostate 
cancer, PTEN loss is most caused by genomic deletion. 
PTEN loss increases with tumor grade and there is a 
high concordance between fluorescent in situ hybridiza-
tion with (more readily available) immunohistochemical 
assays for PTEN (Lotan et al. 2016; Picanco-Albuquerque 
et  al. 2016; Lotan et  al. 2017; Jamaspishvili et  al. 2018). 
In prostatectomy specimens, about 20% of acinar adeno-
carcinomas show PTEN loss but this finding rises to 40% 
in metastatic tumors. In prostate adenocarcinoma, there 
may be genetic heterogeneity regardless PTEN status 
and about 40% of tumors with PTEN loss is detected as 
a subclonal finding coexisting with areas of intact PTEN 
expression (Krohn et  al. 2014, Jamaspishvili et  al. 2018) 
(Fig. 1).

There is an abundance of studies on the prognostic 
value of PTEN as a cheap, widely available, non-central-
ized immunohistochemical test. PTEN loss at biopsy 
samples (defined as markedly decreased or entirely 
negative across > 10% of tumor cells compared with sur-
rounding benign glands and/or stroma) with GG1 pros-
tate cancer showed to be more associate with upgrading 
at radical prostatectomy specimen (Lotan et  al. 2015). 
Among patients with GG2 tumors at biopsy, PTEN loss 
in these samples predicted non-confined disease in pros-
tatectomy specimen and biochemical recurrence after 
surgery (Guedes et al. 2017). In a retrospective study in 
patients treated with radical prostatectomy, PTEN loss 
at biopsy could predict development of metastasis and 
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prostate cancer-specific mortality after radical prostatec-
tomy (Mithal et al. 2014).

Few studies have compared PTEN immunohistochem-
istry with RNA-based genomic signatures. In surgical 
cohorts, PTEN loss lost its prognostic value (to predict 
biochemical recurrence) in models including Oncotype 
Dx and Prolaris. Importantly, these studies did not 
include a cost–benefit analysis. In one study, the single 
immunochemical reaction for PTEN outperformed Pro-
laris as an independent prognostic factor for metastasis 
and death (Lokman et al. 2018). Other study showed the 
Prolaris score, but not PTEN or Ki7 status by immuno-
histochemistry, predictors of recurrence of prostatec-
tomy. The model of this study, however, was limited by 
the inclusion of many specimens from before 2005 ISUP 
consensus Gleason grading – probably using and out-
dated grading approach (Léon et al. 2018).

In the specific setting of active surveillance of patients 
with GG1 disease, a case–control (132 patients) study 
from John Hopkins, US, showed that PTEN loss was 
more common in patients who underwent grade reclas-
sification during follow up. PTEN loss seems to be rare 
in patients with GG1 eligible for active surveillance (5% 
in this study) and is still uncommon in patients who 
underwent reclassification although much more com-
mon than in those patients who were maintained under 
active surveillance (9% versus 2%) (Tosoian et al. 2019). 
In a Finish cohort (231 patients with GG1 adenocar-
cinoma) undergoing active surveillance, PTEN loss 
at biopsy predicted rebiopsy GG upgrade, treatment 
change, and adverse histopathology in prostatectomy 
specimens (Lotan et al. 2020).

PTEN loss seems to be more common in prostate 
adenocarcinomas that are visible in Magnetic resonance 
imaging (Eineluoto et al. 2020). As a consequence, PTEN 
expression should be evaluated in target biopsy cores in 
addition to specimens selected by pathologic findings 
(highest grade and tumor extent). A growing field of 

study in prostate cancer is radiogenomics – the integra-
tion of Imaging and Molecular Characterization (Ferro 
et al. 2021; Banerjee et al. 2022).

Ki67 index
Ki67 is a protein encoded by the MK167 gene that 
is highly expressed in cycling cells and not in resting 
G0-phase cells. Its biological function is not well under-
stood but it is used in Surgical Pathology as a prototype 
immunohistochemical marker of cell proliferation. The 
proportion of Ki67 positive cells within a tumor is named 
Ki67 proliferative (or labeling) index. It is commonly used 
in Pathology and is used in many scenarios including risk 
stratification in breast invasive carcinoma (commonly 
used to indicate neoadjuvant chemotherapy) and key 
criterion for grading well differentiated neuroendocrine 
tumors.

Ki67 index has been proved of prognostic value in 
prostate cancer in different scenarios. In a large study 
enrolling 1,004 patients who underwent prostatectomy, 
the cutoff of > 5% Ki67 index in the prostatectomy sam-
ples was associated with recurrence and reduced cancer-
specific and overall survival (Tretiakova et  al. 2016). In 
preoperative biopsies (279 patients) Ki67 index with a 
cutoff of 10% was predictive of biochemical recurrence 
after prostatectomy and outperformed serum PSA or 
tumor extent at biopsy in both the scenarios of low-vol-
ume or low-grade tumor (GG1) (Zellweger et al. 2009).

In a large cohort (756 patients) of patients treated con-
servatively (any tumor grade), Ki67 index as a continu-
ous variable (or with a 5% cutoff) was an independent 
risk factor for prostate cancer death – along with tumor 
grade, tumor extent at biopsy and PSA levels (Kammerer-
Jacquet et al. 2019).

In the specific setting of patients under active surveil-
lance for low or intermediate risk tumors (GG1/2, serum 
PSA < 15  ng/dL and tumor extent at biopsy ≤ 50%), a 
60-patients cohort showed that PSA density, Ki-67 index 

Fig. 1 PTEN expression can be lost in low‑grade GG1 acinar adenocarcinomas of the prostate. This finding may identify patients under active 
surveillance who will experience grade reclassification and switch conduct for definitive treatment. It may be used as one factor—among other 
clinical, laboratorial and pathologic findings at biopsy—for decision making. HE (A) and PTEN immunohistochemistry (B and C 40x and 100x, 
magnification)
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and grade were independent predictors of progression to 
radical treatment (Jhavar et al. 2009).

There is no established threshold, but the most appro-
priate value appears to be between 5 and 10%. In the 
2019 ISUP survey, 45% of pathologists believe Ki67 to be 
useful for decision making in the setting of active surveil-
lance versus definite treatment.

Use of immunohistochemical markers in routine practice
Guidelines for oncologists and urologist currently do not 
recommend the use of immunohistochemical prognostic 
markers in the setting of localized low-grade or interme-
diate-grade prostate adenocarcinoma. The recommenda-
tions of the International Society of Urological Pathology 
(ISUP) from the 2019 Consultation Conference included 
the following statements:

– Ki67 proliferative (or labeling) index and PTEN loss 
are potentially useful prognostic biomarkers in the 
GG1 (and some GG2) localized prostate adenocar-
cinoma specially in core biopsies in which clinicians 
and patients are evaluating the eligibility for active 
surveillance.

– Both Ki67 proliferative (or labeling) index and PTEN 
loss would be one factor among many others con-
sidered for the decision on active surveillance versus 
definitive treatment.

– Testing could be performed by immunohistochem-
istry for Ki67 and either immunohistochemistry or 
fluorescent in  situ hybridization for PTEN (loss of 
expression or deletion, respectively) in core biop-
sies with highest grade and/or volume of tumor with 
optional additional evaluation in other samples.

Special attention should be undertaken in core biopsy 
from targeted lesions with suspicious findings in mag-
netic resonance imaging.

Immunohistochemical markers such as PTEN and Ki67 
are inexpensive, globally established in Pathology labo-
ratories worldwide, and need to be compared in more 
studies with centrally tested and expensive commercial 
RNA-based genomic assays.

mRNA‑based genomic signatures
mRNA-based signatures have been developed and vali-
dated as prognostic factors in localized prostate carci-
noma. In recent years, they have gained ground as tools 
for decision making in the setting of active surveillance. 
Currently, the NCCN guidelines acknowledge that three 
centrally tested commercial assays may be considered for 
patients for risk stratification. These tests are Oncotype 
Dx (Genomic Health), Prolaris (Myriad Genetics) and 

Decipher (GenomicDx Biosciences) (NCCN 2024a, b). 
They are considered prognostic with level of evidence IB, 
IIIC and IIIC; respectively. They are not cited in current 
EAU / ESMO guidelines (Motter et al. 2023).

Decipher is a 22 gene-expression assay that can be 
applied for formalin-fixed paraffin-embedded for biopsy 
and prostatectomy specimens. The test can predict 
adverse pathology in patients with low- and intermedi-
ate-risk prostate cancer as stratified by clinical evalu-
ation (NCCN risk groups) (Herlemann et  al. 2020). In 
prospective studies, patients with a biopsy-based diag-
nosis of prostate cancer, high-risk scores on the Deci-
pher Biopsy test predicted shorter time to treatment in 
patients undergoing active surveillance and shorter time 
to treatment failure in patients receiving local treatment 
(Press et  al. 2022; Vince et  al. 2022). In a recent United 
state database analysis enrolling 572, 545 patients (8,927 
patients tested for Decipher), the use of molecular test 
were associated with higher likehood of option for con-
servative treatment. High Decipher scores were associ-
ated with option for radiation therapy. For those opting 
for prostatectomy, high Decipher scores were associated 
with adverse pathology (Zaorsky et al. 2023).

Apart from the localized cancer scenario, it has also 
been tested in advanced disease. A meta-analysis cov-
ering 855 patients showed that Decipher can predict 
10-year metastasis risk in the post-prostatectomy sce-
nario (Spratt et  al. 2017). Also in radical prostatectomy 
specimens (NRG/RTOG 9601 trial), which randomized 
patients with prostate carcinoma with biochemical recur-
rence and pT3N0 or pT2N0 disease with positive mar-
gins, to receive salvage radiotherapy alone versus salvage 
radiotherapy with antiandrogen therapy. Decipher was 
independently prognostic for distant metastasis, cancer 
specific mortality, and overall survival (Feng et al. 2021). 
Importantly, the same study suggested that patients with 
lower Decipher scores had little or no benefit from the 
addition of antiandrogen therapy to salvage radiother-
apy, whereas those patients with higher scores had much 
more benefit from the antiandrogen therapy. Currently, 
NCCN guidelines now recommend consideration of 
Decipher testing to aid decision making in the postopera-
tive setting (NCCN et al. 2024).

An additional test is the Decipher PORTOS score. It 
evaluates 24 genes and was validated in a retrospective 
study which demonstrated that high PORTOS scores 
were significantly associated with decreased 10-year 
metastasis risk in patients who received postoperative 
radiotherapy. As a consequence, Decipher PORTOS is 
the only genomic classifier with predictive value regard-
ing response to adjuvant or salvage radiotherapy but is 
not recommended for this decision making yet in the 
absence of prospective studies (Eggener et al. 2020).
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Oncotype DX GPS is a panel consisting of 12 prostate 
cancer-related and 5 housekeeping genes (score 0 to 100), 
suitable for formalin-fixed biopsy specimens. This assay 
has been assessed in a cohort (n = 431) low- to interme-
diate-risk prostate cancer biopsies, showing correlation 
with adverse pathologic features (GG3 or extrapros-
tatic extension), biochemical recurrence, and metastasis 
(Cullen et  al. 2015). However, a more recent study in a 
prospective cohort (n = 432) treated with active surveil-
lance failed to validate the GPS test and suggested that 
adding GPS to a model containing Prostate specific anti-
gen (PSA) kinetics and diagnostic Gleason grading did 
not significantly improve stratification of risk for adverse 
pathology over the clinical factors (Lin et al. 2020). In a 
recent retrospective cohort, pathological classification 
was concordant to Oncotype DX GPS risk stratification 
in 84% of all cases. The study showed that risk stratifi-
cation by accurate pathologic reporting of biopsy Glea-
son grade and PSA levels, is equivalent to Oncotype DX 
testing in low-risk patients. Additionally, the clinico-
pathologic stratification is superior to Oncotype DX in 
predicting the outcome of intermediate-favorable risk 
patients (Renavikar et al. 2023).

Prolaris is a gene-expression panel including 31 cell 
cycle-related and 5 housekeeping genes, which can be 
performed on formalin-fixed biopsy specimens and has 
shown prognostic value when applied to biopsies and 
prostatectomy samples. It can predict 10-year metastatic 
risk after prostatectomy and cancer-specific mortality 
after conservative treatment (Lin et  al. 2018; Akhound-
ova et al. 2022).

The NCCN guidelines propose the use of Decipher or 
Prolaris to support risk assessment in patients with unfa-
vorable intermediate- to high-risk localized prostate can-
cer and a life expectancy of at least 10 years and allow the 
use of any of the 3 tests (Decipher, Prolaris, or Oncotype 
DX Prostate) for patients with low to favorable interme-
diate risk.

The recommendations of the International Society of 
Urological Pathology (ISUP) from the 2019 Consultation 
Conference included the following statements:

– Genomic signatures are of potential benefit for addi-
tional information in the scenario of active surveil-
lance and post radical prostatectomy settings

– they should be compared with robust / detailed path-
ologic assessment and use of immunohistochemical 
biomarkers which requires further validation

– the issue of tumor heterogeneity should be addressed 
including the evaluation of best sampling strategies 
(e.g., targeted lesion samples).

The second item above is interesting to see in detail. 
The pathology report usually gives the information 
on the diagnosis of adenocarcinoma and grade. Grade 
groups are used in prognostic nomograms and are cru-
cial to select treatment. It must be emphasized, however, 
that additional information is given in Pathology reports 
that are usually not used in risk assessment. Both GUPS 
and ISUP recommend giving the percentage of Gleason 
pattern 4 and informing whether cribriform morphol-
ogy is present in Pathology reports of GG2/GG3 tumors 
(Epstein et  al. 2021; van Leenders et  al. 2020a). A body 
of literature highlights the prognostic importance of 
these findings (Sharma and Miyamoto 2018, van Leend-
ers et al. 2020b, Delahunt et al. 2022, Seyrek et al. 2022). 
The literature is almost entirely omissive on which extent 
genomic signatures would give additional prognostic 
information if this detailed pathologic evaluation were 
taking into account. In a retrospective study, 37% of the 
Oncotype DX score could be predicted by morphologic 
features at biopsy including cribriform morphology 
(Greenland et al. 2019).

Similarly, few studies have compared commercial 
mRNA-based tests with single immunohistochemical 
markers. In a cohort enrolling 424 patients treated by 
radical prostatectomy, PTEN loss outperformed Pro-
laris as a prognostic risk factor or metastasis or cancer 
related death (hazard ratio of 5,3 versus 2,2) (Leapman 
et al. 2018). More studies with similar design are urgently 
needed.

Two additional interesting points are the variabil-
ity between tests. There is plenty of studies focusing on 
interobserver variability among pathologists to assign a 
Gleason grade for prostate adenocarcinoma. Risk assess-
ment variation among genomic classifiers are much less 
scrutinized. In a small series of 22 patients who were 
tested for two or three commercial tests, the agreement 
in risk assignment were lower than expected: Decipher 
and Prolaris showed 67% agreement (kappa = 0.31), Pro-
laris e Oncotype Dx 75% (kappa = 0.39) and Decipher 
and Oncotype Dx 50% (kappa not assessable) (Alam et al. 
2019). A study from Michigan, USA, showed the real-life 
picture of mRNA based gene tests. It started with 3966 
patients with an initial diagnosis of prostate adenocarci-
noma: 747 (19%) underwent some commercially avail-
able testing: 59% (439) Prolaris, 30% (227) Decipher and 
11% (81) OncotypeDx. Active surveillance was the option 
for 58% of patients not tested at all, 76% tested with 
low-risk results and 46% of those tested with high-risk 
results. The molecular test with a low-risk result made 
one patient out of nine who would initially opt for defini-
tive treatment to switch option for active surveillance. 
On the other hand, the molecular test with a high-risk 
result made one patient out of 26 who would initially opt 
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for active surveillance to switch the choice for definitive 
treatment. Risk assessment was variable between differ-
ent tests with patients with GG1 adenocarcinoma being 
defined as high-risk in 14% of those tested by Prolaris and 
58% of those tested by Decipher (Hu et al. 2018). Studies 
with similar designs are important to evaluate the accu-
rate importance of such tests in clinical routine practice.

As also commented above, a growing field of study in 
prostate cancer is radiogenomics and it should be empha-
sized that molecular alterations of prognostic/predictive 
importance may be better represented in targeted lesions 
from areas that are visible at magnetic resonance imaging 
(Ferro et al. 2021; Banerjee et al. 2022).

Biomarkers in the scenario of advanced prostate carcinoma
Metastatic prostate cancer is frequently treated with 
anti-androgen therapy (alone or in combination of other 
treatments) and most patients will show a remarkable 
response at first. Disease progression in patients with 
castrate levels of serum testosterone is termed castra-
tion-resistant prostate cancer (CRPC). Although ini-
tially believed to be independent of androgen receptor 
signaling, CRPC usually remains dependent on andro-
gen receptor activation pathways. Additional therapies 
against androgen receptor signaling are used in the CRPC 
setting such as blockers of androgen synthesis (abira-
terone) and direct antagonists of the androgen receptor 
(enzalutamide, darolutamide and apalutamide). In pros-
tate cancer, DNA repair defect are targetable pathways. 
In addition, some androgen receptor-related biomarkers 
may have prognostic effect. Advanced adenocarcino-
mas in a selective pressure of long-term anti-androgen 
therapy may undergo transformation into neuroendo-
crine carcinoma with dramatic prognostic and treatment 
implications.

Homologous recombination defects
Almost 20% of metastatic prostate cancer show genomic 
alterations in homologous recombination repair path-
way including BRCA1, BRCA2 and ATM genes (Robin-
son et al. 2015). About half of these case show germline 
mutations which comprises 10% of all men with CRPC 
(Robinson et  al. 2015; Pritchard et  al. 2016). This path-
way defect is twice more frequent in advanced tumors 
compared to localized disease (Cancer Genome Atlas 
Research Network 2015). Germline and somatic muta-
tions of genes involved in the homologous recombination 
repair pathway are common in aggressive histologic find-
ings such as invasive ductal adenocarcinoma, intraductal 
carcinoma and acinar adenocarcinoma with Gleason pat-
tern 5 (Lotan et al. 2020). Germline mutations in BRCA2 
and ATM genes are more common in lethal prostate 

cancer when compared to localized disease (Na et  al. 
2017) and are associated with tumor reclassification and 
treatment switch in patients under a active surveillance 
protocol (Carter er al. 2019).

Overall, germline DNA repair mutations have been 
reported with the lowest frequencies seen in patients 
with lower-risk localized prostate cancer (1.6%–3.8%), 
higher frequencies in those with higher-risk localized 
disease (6%–8.9%), and the highest frequencies in those 
with metastatic disease (7.3%–16.2%)0.36,38–44 One 
study found that 11.8% of patients with metastatic pros-
tate cancer have germline mutations in 1 of 16 DNA 
repair genes: BRCA2 (5.3%), ATM (1.6%), CHEK2 (1.9%), 
BRCA1 (0.9%), RAD51D (0.4%), PALB2 (0.4%), ATR  
(0.3%), and NBN, PMS2, GEN1, MSH2, MSH6, RAD51C, 
MRE11A, BRIP1, or FAM175A (Pritchard et al. 2016).

In retrospective studies, CRPC patients with germline 
homologous recombination defects have improved 
responses to chemotherapy mirroring the scenario seen 
in ovarian cancer. More recently, poly (ADP-ribose) 
polymerase (PARP) inhibitors have been approved as an 
option for treatment with metastatic prostate cancer who 
progress during anti-androgen therapy (Mota el al. 2020; 
Al-Akhras et al. 2024).

Since the journey of the patient with metastatic pros-
tate cancer is usually long (> 10  years) it is not unu-
sual that tissue specimens may be stored for many 
years before being used for molecular evaluation. Also, 
the failure rate using an NGS assay is higher in meta-
static bone samples, and decalcification contributes to 
increasing failure. Several studies have investigated the 
role of circulating tumor DNA (ctDNA) in metastatic 
disease. A recent genomic analysis of ctDNA in 3.334 
advanced prostate cancer patients has been reported 
showing that 94% of patients had detectable ctDNA. 
In this analysis, 837 patients had both liquid and tissue 
(archival or metastatic) available for NGS. Moreover, 
the median tumor fraction in those samples was 7.5%; 
however, the threshold for detection of gene amplifica-
tion in this analysis was ≥ 20%, meaning that informa-
tion about amplification/deletion was possible in only 
38% of the overall samples (Giunta et al. 2021).

As a consequence, there is a considerable rate of 
inconclusive results due to poor preservation. Early 
testing in high-risk patients is advised. The ISUP cur-
rently recommends:

– a germline panel for defects on homologous recom-
bination pathway for patients with localized pros-
tate cancer with high grade (≥ GG4), any grade 
with PSA levels ≥ 20  ng/mL or known metastatic 
disease.
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– a somatic panel for defects on homologous recom-
bination pathway for patients with known distant 
metastases with at least testing for BRCA1 and 
BRCA2.

An additional comment is that NCCN (2024a, b) fur-
ther indicates germline mutation testing for patients 
with intraductal carcinoma at biopsy (Isaacsson et  al. 
2018; Risbridger et  al. 2015; Taylor et  al. 2017). This 
observation emphasizes the importance of this diagno-
sis at biopsy specimens regardless of incorporating it or 
not in final grading score as it is recommended and not 
recommended by the two major international societies 
of Urological Pathology – ISUP and GUPS, respectively 
(Epstein et  al. 2021; van Leenders et  al.  2020a, b). Ger-
mline testing should also be considered for patients of 
intermediate risk with invasive cribriform and/or inva-
sive ductal morphology although evidence of association 
between these morphologies and germline mutations in 
homologous recombination DNA repair pathways is less 
compelling.

Tests are preferentially performed in metastatic tis-
sue but, if unavailable, in primary tumor samples. 
NCCN (2024a, b) recommends Multigene tumor test-
ing for alterations in homologous recombination path-
way, including but not limited to BRCA1, BRCA2, ATM, 
PALB2, FANCA, RAD51D, CHEK2, and CDK12, is rec-
ommended in patients with metastatic prostate cancer. 
This testing can be considered in patients with regional 
prostate cancer. The PROFOUND trial included patients 
with BRCA1, BRCA2, ATM, BRIP1, BARD1, CDK12, CH
EK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD
51C, RAD51D, and RAD54L gene alterations. This study 
showed the effect of PARP inhibitor Olaparib on progres-
sion-free survival in pateints with metastatic castration-
resistant prostate cancer (de Bono et al. 2020).

PARP inhibitors act by trapping PARP on DNA, which 
is key as it presents a physical obstacle to the replication 
machinery. To resolve the PARP-DNA interaction, HRR 
is necessary. Therefore, in HRR-deficient cancer cells, 
trapped PARP results in replication fork collapse and 
finally cell death. Non neoplastic cells have both path-
ways preserved and, so, PARP inhibition has no lethal 
effect due to alternative homologous recombination 
activation.

Olaparib is a poly (ADP‐ribose) polymerase) inhibi-
tor (iPARP) that rose in recent years as an option for 
patients with metastatic CRPC with mutated genes in 
homologous recombination pathways. Patients treated 
with Olaparib had longer progression-free survival inter-
vals when compared to patients treated with abiraterone 
or enzalutamide (NCCN 2024a, b). Patients with BRCA2 
mutations show improved responses when compared to 

other genetic alterations in this pathway. Olaparib with 
abiraterone may be used in some patients with metastatic 
CRPC (PROS16) and a pathogenic BRCA1 or BRCA2 
mutation (germline and/or somatic) who have not yet 
received a novel hormone therapy (Saad et al. 2023a).

Rucaparib is an option for patients with metastatic 
CRPC and a pathogenic BRCA1 or BRCA2 mutation 
(germline and/or somatic) who have been treated with 
androgen receptor-directed therapy and a taxane-based 
chemotherapy. Progression-free survival was significantly 
longer in the group that received rucaparib than in those 
who received a control medication (abiraterone, enzalu-
tamide, or docetaxel). In the pre-docetaxel setting, ruca-
parib is a preferred option for patients with BRCA1 or 
BRCA2 mutations. If the patient is not fit for chemother-
apy, rucaparib can be considered even if taxane-based 
therapy has not been given (Fizazi et al. 2023).

Talazoparib plus enzalutamide is a treatment option 
for patients with metastatic CRPC and a pathogenic 
mutation (germline and/or somatic) in an HRR gene 
(BRCA1, BRCA2, ATM, ATR, CDK12, CHEK2, FANCA, 
MLH1, MRE11A, NBN, PALB2, or RAD51C) who have 
not yet had treatment in the setting of CRPC, depending 
on prior treatment in other disease settings (Saad et  al. 
2023b). Median progression-free survival was improved 
in the talazoparib group compared with controls. There 
may be heterogeneity of response based on the specific 
gene mutation.

Niraparib plus abiraterone is a treatment option for 
patients with metastatic CRPC and a pathogenic BRCA1 
or BRCA2 mutation (germline and/or somatic) who have 
not yet had treatment in the setting of metastatic CRPC, 
depending on prior treatment in other disease settings. 
Progression-free survival was improved for those receiv-
ing niraparib in the HRR mutation group overall and in 
the BRCA mutation subgroup.

DNA mismatch repair
Defects in mismatch repair pathway (MMR) are also 
more common in metastatic prostate cancer than in 
localized disease. Pathogenic mutations in MMR genes 
are detected in 10% of CRPC compared to < 3% of pri-
mary tumors of all grades. These alterations are more 
common in aggressive histologies such as ductal adeno-
carcinomas and primary adenocarcinomas with Gleason 
pattern 5. Only about 20% of MMR defects derive from 
germline mutations. The risk of prostate carcinoma is 
raised in patients with Lynch syndrome.

Pembrolizumab (monoclonal antibody against pro-
grammed death receptor-1, PD-1, a immune check-
points inhibitor) is approved for all progressing 
tumors with MMR defects or microsatellite instability. 
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Immunotherapy responses are lower in prostate cancer 
than in other primary sites.

The ISUP currently recommends:

– a somatic test for defects in mismatch repair pathway 
for patients with known distant metastases which 
can be done by immunohistochemistry (MLH1, 
PMS2, MSH2, MSH6) with or without microsatellite 
instability testing and gene sequencing.

CDK12 deficiency
CDK12  encodes cyclin-dependent kinase 12, a tumor 
suppressor protein with diverse functions related to 
genomic stability. At first, CDK12 role in DNA repair 
was attributed to regulation of homologous recombina-
tion DNA repair genes (BRCA1,  FANCD2, and  ATR ), 
with a suggestion that genetic inactivation of CDK12 was 
associated with PARP inhibitor sensitivity in preclinical 
models.  More recently, however, it was proposed that 
in prostate cancer, CDK12 may function primarily in 
DNA replication-associated repair, with biallelic inacti-
vation of  CDK12  resulting in a genomic signature with 
widespread focal tandem duplications which generates 
fusion–induced neoantigens and, as a consequence, sen-
sitivity to immune checkpoint inhibitors (Wu et al. 2018).

Cyclin-dependent kinase 2 is encoded by CDK12 gene 
which is altered in 2% and 5% of localized and metastatic 
prostate carcinomas, respectively (Chung et al. 2019) and 
is associated with aggressive disease (Nguyen et al. 2020). 
These CDK12-altered tumors showed poor responses to 
androgen-receptor signaling inhibitors and taxane-based 
chemotherapy, did not respond to PARPi and showed 
variable responses to checkpoint inhibitors (Antonarakis 
et al. 2020; Schweizer et al. 2020).

Androgen receptor‑related markers
About half of CRPC harbor androgen receptor gene 
mutations or amplifications. From studies in tumor 
cell lines, it was identified that a splice variant ARv7 
is possibly associated with resistance to anti-androgen 
therapy. The expression rate of ARv7 varies as function 
of methods employed (RT-PCR, sequencing, immuno-
histochemistry) or the specimen tested (tissue samples 
or circulating tumor cells) (Lotan et  al. 2020). Cur-
rently, there is no role of ARv7 testing in tumor samples 
because it is a very common finding in tumors exposed 
to anti-androgen therapy. Most studies showing poten-
tial to predict resistance to anti-androgen therapy is 
derived from studies that detected androgen receptor 
amplification or splice variant ARv7 testing in cell free 
DNA.

Diagnosis of neuroendocrine prostate cancer
Small cell or large cell neuroendocrine carcinoma is a rare 
diagnosis in the localized disease setting. In advanced 
CRPC, neuroendocrine carcinoma is seen in up to 10% of 
the cases in which a biopsy was performed. It is well rec-
ognized that transformation of acinar adenocarcinoma 
in neuroendocrine carcinoma may develop as a form of 
lineage plasticity for acquisition of resistance to therapies 
targeting androgen receptor pathway. Indeed, the WHO 
classification creates as a different entity the Treatment-
related neuroendocrine prostatic carcinoma (t-NEPC). 
In more than half of the patients in whom it develops, 
t-NEPC develops within 24 months of androgen-depriva-
tion therapy and the median survival time after transfor-
mation into t-NEPC is only 7 months (Rubin et al. 2022).

Neuroendocrine carcinoma responds poorly to anti-
androgen receptors and this diagnosis prompt the switch 
of treatment for limited option of platinum chemother-
apy or enrolling patients in clinical trials.

Neuroendocrine markers are commonly used in 
Pathology laboratories (chromogranin, synaptophysin, 
CD56) but are not specific for neuroendocrine carci-
nomas. Variable expression of these markers is seen in 
low and intermediate grade localized acinar adenocar-
cinomas of the prostate, and this finding has no clinical 
implications. As a consequence, routine immunohisto-
chemical testing for neuroendocrine differentiation is not 
advised in this scenario.

Similar to what is seen in lung neoplasms, neuroen-
docrine prostate adenocarcinoma usually shows TP53 
and RB1 inactivation. These changes, however, can be 
observed in high-grade acinar adenocarcinoma, espe-
cially in the CRPC setting.

The ISUP Conference consultation of 2019 
recommended:

– to not test expression of neuroendocrine markers in 
localized prostate cancer unless it shows suggestive 
neuroendocrine morphology

– the term neuroendocrine differentiation is best 
reserved for high-grade prostate cancers (with clini-
cal implication being evaluated) and not for well dif-
ferentiated neuroendocrine tumor or low-grade aci-
nar adenocarcinoma

– advanced metastatic CRPC may manifest a range of 
morphologic features and in then future biomarker-
driven clinical trial may define the better treatment 
options for tumors in the spectrum of acinar adeno-
carcinoma and neuroendocrine carcinoma

There is not enough data to infer clinical implica-
tions of expression of neuroendocrine markers in oth-
erwise ordinary high-grade prostate adenocarcinomas. 
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A recent retrospective series enrolled 17 patients with 
prostate carcinomas GG ≥ 2 sharing expression of pros-
tate (androgen receptor, PSA, NHK3.1) and neuroen-
docrine marker synaptohysin (the largest to date). This 
phenotype seems to have no prognostic value in de novo 
setting, while neuroendocrine differentiation arising in 
the setting of patients with prior diagnosis of prostate 
cancer during treatment (so called treatment-emergent 
amphicrine prostate cancer) had a poor prognosis (5.3-
month survival). The treatment-emergent neuroendo-
crine transdifferentiation was detected in a mean interval 
of 41.1  months after initiation of anti-androgen therapy 
(Graham et al. 2023).

From a morphologic point of view, the diagnosis of 
Gleason pattern 5 in the absence of Gleason patterns 3 
or 4 should be made after cautiously excluding benign 
mimickers, urothelial carcinoma and neuroendocrine 
carcinoma. A low threshold should be considered to use 
immunostains in this context. Neuroendocrine carci-
noma, notably the small cell type, should be considered in 
tumors with prominent mitotic activity, numerous apop-
totic bodies, high nuclear-to-cytoplasmic ratio, nuclear 
molding, extensive (geographical necrosis) and absence 
of central prominent nucleoli. Expression of neuroen-
docrine markers in the absence of adequate morphology 
should not lead to overdiagnosis of small cell carcinoma. 
Low-grade and high-grade prostate adenocarcinoma 
show variable expression of neuroendocrine markers 
(discussed above). Indeed, in a tumor morphologically 
indicative of neuroendocrine carcinoma, the absence of 
prostatic acinar differentiation markers (NKX3.1, pros-
tein/P501S, PSMA and PSA) is much more compelling 
evidence than expression of neuroendocrine markers 
such as synaptophysin, chromogranin and INSM1 
(Baraban and Epstein 2022). Additional valuable stains 
are TTF1 (expressed in 50% of small cell carcinomas of 
prostate origin) and a Ki67 index higher than 70% (high-
grade acinar adenocarcinoma usually show a proliferative 
index below 50%) (Epstein et al. 2014a). The use of PSA 
as a single marker of prostatic differentiation is limited by 
the observation that it is expressed in 85–90% of Gleason 
10 (5 + 5) acinar adenocarcinoma (Epstein et  al. 2014b). 
The sensitivity for PSA, PSAP, PSMA and NKX3.1 was 
64–94%, 98.6%, 100% and 98.6–100%, respectively. Cur-
rently, NKX3.1 is the best single marker for prostatic 
acinar differentiation with high sensitivity and very high 
specificity (99,7%) (Gurel et al. 2010; Huang et al. 2018) 
(Fig. 2).

From a clinical perspective, accurate diagnosis of neu-
roendocrine carcinoma is of crucial importance. Since 
the diagnosis come with the prediction of resistance to 
anti-androgen, it will exclude a large options new drugs 
developed targeting the androgen receptor pathway 

– that may show remarkable responses in patients with 
metastatic high-grade adenocarcinoma who experienced 
progression after initial anti-androgen therapy.

Since neuroendocrine transformation is a well-known 
phenomenon in prostate cancer progression leading to 
resistance to anti-androgen therapies, it is not surprising 
that some advanced tumors commonly show a spectrum 
of chances that does not fit in the prototypical poles of 
high-grade acinar adenocarcinoma and clearcut neu-
roendocrine carcinomas.

The current WHO (2022) criteria for the diagnosis of 
neuroendocrine carcinomas of the prostate are:

– for small cell carcinoma: characteristic high-grade 
histology including nuclear and architectural features 
(essential) and positive immunostaining for synapto-
physin, chromogranin A, and/or additional neuroen-
docrine markers (desirable).

– for large cell carcinoma:  characteristic high-grade 
histology combined with positive immunostaining 
for synaptophysin and chromogranin A (essential).

Treatment-related neuroendocrine prostatic carci-
noma:  prostatic carcinoma with neuroendocrine dif-
ferentiation, pure or admixed with generally high-grade 
adenocarcinoma; confirmatory immunohistochemical 
stains such as synaptophysin and chromogranin) history 
of antiandrogen therapy (essential).

Use of artificial intelligence in prostate cancer
A rapidly growing in field is the application of artificial 
intelligence in Surgical Pathology, and its utility of pros-
tate cancer using this tool has gained much attention 
in recent years. Deep leaning models were developed 
and applied for diagnosis, grading, outcome prediction 
and prediction of genomic signatures, and have been 
introduced in the workflow of pathologists worldwide. 
A review of the current state of the art of this topic 
is beyond the scope of the review and can has been 
reviewed in detail elsewhere (Rabilloud et al. 2023).

Biomarkers in bladder cancer
Bladder cancer is the ninth most common cancer in the 
world (614,298 cases/year), occurring mainly in North 
Africa, Southern Europe and North America; it has a 
mortality rate of 220 thousand cases/year (International 
Agency for Research on Cancer 2021), with a higher 
prevalence in males and a 5-year survival rate of 77% 
(WHO 2022).

Urothelial carcinoma is the most common histologi-
cal type of bladder cancer (comprising 90% of cases) 
and they may occur anywhere in the urothelial tract. 
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Understanding the histology of urothelial carcinoma 
is necessary for the diagnosis and treatment strategies, 
since they can have various histological patterns, some of 
which are associated with poorer prognosis and aggres-
sive behavior (like micropapillary, sarcomatous, nested 
patterns) (WHO 2022).

They can present themselves as flat lesions (carci-
noma in situ), or papillary lesions, and it is already well 
known that the paths of development of lesion patterns 
are different: non-muscle-invasive lesions are related 
to changes in molecular pathways involving FGFR3, 
H-RAS and PIK3CA; Muscle-invasive lesions are associ-
ated with mutations in tumor suppressor genes, such as 
TP53, P16 and RB (Netto 2012, Robertson et  al. 2017, 
Inamura 2018).

Molecular subtypes of urothelial carcinoma
Bladder cancer is a heterogeneous disease with various 
molecular subtypes that influence its behavior, prognosis, 
and response to treatment. Understanding these subtypes 
is crucial for developing targeted therapies and personal-
ized treatment plans for patients (Inamura 2018).

Luminal‑papillary subtype (35% of cases)
Luminal-like bladder cancer is characterized by the 
expression of genes associated with luminal epithelial 
cells. These tumors often show a more differentiated phe-
notype and are typically non-invasive or low-grade. They 
may have mutations in genes such as FGFR3 (fibroblast 
growth factor receptor 3) and PIK3CA (phosphatidylin-
ositol-4,5-bisphosphate 3-kinase catalytic subunit alpha), 
which are associated with cell signaling pathways and cell 
proliferation. For these cases, the suggestive treatment is 
FGFR3 inhibitors and early cystectomy without neoadju-
vant chemotherapy (Inamura 2018).

Luminal Infiltrated subtype (around 19% of cases)
Infiltrated bladder cancer is characterized by the pres-
ence of immune cell infiltration within the tumor micro-
environment, and they also express smooth muscle 
and myofibroblasts gene signatures. These tumors may 
exhibit high levels of immune checkpoint molecules such 
as PD-L1 (programmed death-ligand 1) and may respond 
well to immunotherapy agents targeting the PD-1/PD-L1 
axis (Inamura 2018).

Luminal infiltrated subtype also has alterations in the 
TP53 gene and dysregulation of p53 pathway signaling. 
These tumors often have a high mutational burden and 
may be associated with a more aggressive phenotype 
and poorer prognosis. Neoadjuvant chemotherapy or 

molecular target therapy or immune molecular check-
points treatments can be used in these cases (Inamura 
2018).

Basal‑squamous subtype (35% of cases)
Basal-squamous bladder cancer is more aggressive 
and tends to be invasive and high-grade. These tumors 
resemble basal cells of the bladder epithelium and can 
exhibit features of squamous cell carcinoma. Basal-squa-
mous tumors often show mutations in tumor suppressor 
genes such as TP53 (tumor protein p53) and RB1 (retino-
blastoma 1), which are involved in cell cycle regulation 
and DNA repair. The suggestion of treatment for these 
patients is with neoadjuvant chemotherapy and immune 
checkpoint molecules such as PD-L1 (programmed 
death-ligand 1) and may respond well to immunotherapy 
agents targeting the PD-1/PD-L1 axis (Inamura 2018).

Neuronal subtype
This subtype is characterized by tumors that express 
genes associated with neuronal differentiation. Neu-
ronal subtype bladder cancers may have a distinct clinical 
course and response to therapy compared to other sub-
types. They may exhibit neural markers such as synap-
tophysin and chromogranin A and are associated with a 
neuroendocrine phenotype. The treatment of choice for 
these cases are etoposide plus cisplatin-based therapy 
(Inamura 2018).

Immune checkpoint molecules (PDL1)
Programmed cell death ligand 1 (PD-L1) inhibitors have 
emerged as a promising therapeutic option for the treat-
ment of bladder cancer, especially in the setting of local 
advanced or metastatic disease. Bladder cancer is known 
to be immunogenic, with tumor cells expressing PD-L1 
to evade immune surveillance. PD-L1 inhibitors work 
by blocking the interaction between PD-L1 on tumor 
cells and PD-1 on immune cells, thereby restoring the 
immune system’s ability to recognize and attack cancer 
cells (Alsaab et al. 2017).

PD-L1 expression has been identified as a potential 
predictive biomarker for response to PD-L1 inhibitors in 
bladder cancer, but its use is currently controversial and 
tends to be more restrictedly used. Tumors with high lev-
els of PD-L1 expression was associated with poor overall 
survival, higher tumor stage and distant metastasis (Zhu 
et al. 2019).

As of this date, with the approval of first-line treatment 
with enfortumab vedotin in combination with pembroli-
zumab for patients with locally advanced or metastatic 
disease, regardless of PD-L1 status, routine immuno-
histochemical evaluation in this setting is no longer 
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performed, limiting the role of PD-L1 expression (Powles 
et al. 2024).

Evaluation of PD‑L1 by pathologists:
The present guidelines for requesting PD-L1 testing in 
UC suggest informing the desired immune checkpoint 
blockade (ICB) drug indicated. This allows pathology lab-
oratories to offer ideal testing conditions. If no specifica-
tion is provided, the diagnosing pathologist should search 
for the information with the oncologist. This exchange 
between clinicians and pathologists is essential for pro-
viding precise and prompt test results. Standardized 
structured reporting is also advised for enhanced quality 
of individual pathology reports (Eckstein et al. 2019).

CPS (combined positive score) is a scoring algorithm 
used to assess first-line treatment eligibility with Pem-
brolizumab for patients with metastasized or locally 
advanced urothelial carcinomas of the bladder and upper 
urinary tract. It focuses on the total amount of PD-L1 
positive immune cells and tumor cells in proportion to 
the total number of tumor cells. The cut-off for CPS is 10, 
and it is capped at 100 (Eckstein et al. 2019).

FGFR3 inhibitors
The FGFR3 (fibroblast growth factor receptor 3) molec-
ular pathway plays a significant role in various cellular 
processes, including cell proliferation, differentiation, 
survival, and migration. Aberrations in the FGFR3 path-
way have been implicated in the development and pro-
gression of several types of cancer, including bladder 
cancer. The activation of FGFR3 triggers several signal-
ing pathways, including the RAS-MAPK (mitogen-acti-
vated protein kinase), PI3K-AKT (phosphatidylinositol 
3-kinase-protein kinase B) pathways, that regulate vari-
ous cellular processes, including cell proliferation, sur-
vival, differentiation, angiogenesis, and metabolism.

The dysregulation of the FGFR3 pathway can happen 
through mutations, amplifications, or overexpression 
(Ornitz and Itoh 2015).

Several FGFR inhibitors, including small-molecule 
tyrosine kinase inhibitors (TKIs) and monoclonal anti-
bodies, have been developed and evaluated in clinical tri-
als for the treatment of FGFR-altered cancers.

In bladder cancer, activating mutations in FGFR3 are 
found predominantly in low-grade non-muscle-invasive 
tumors, particularly in papillary urothelial carcinomas 
FGFR inhibitors such as erdafitinib (Loriot et  al. 2023) 
have shown improved outcomes in patients with invasive 
tumors with FGFR alterations, including FGFR3 muta-
tions, who have progressed on or are ineligible for stand-
ard chemotherapy. That said, it is important to emphasize 
that research into FGFR3 mutations must be carried out 

in the invasive component of neoplasms, to avoid false 
positive results.

Wang et  al. examined the impact of a mutated gene 
found in a subset of urothelial cancers on response to 
treatment with immunotherapy and found that patients 
with tumors harboring mutations in the gene FGFR3 
respond to immunotherapy similarly to patients without 
such mutations (Wang et al. 2019).

HER‑2 target therapy
HER-2, also known as human epidermal growth fac-
tor receptor 2, is a member of the HER family of recep-
tor tyrosine kinases. Abnormalities in the HER-2 gene, 
including overexpression, amplification, and mutation, 
play a critical role in the pathogenesis of various cancers 
(just like breast, lung, colorectal and gastric cancers).

In 2024, the first tumor-agnostic approval of a 
HER2-directed therapy and antibody drug conjugate 
(trastuzumab—deruxtecan) by the Food and Drug 
Administration Food (United States) in patients with 
HER2-positive tumors with immunochesmtry 3 + score.

Studies have shown that in urothelial carcinomas, espe-
cially those of micropapillary subtype, may show HER2 
overexpression. Within tumors with this morphology, 
HER2 overexpression occurs in 68% of cases and there is 
a high correlation between positive immunohistochemis-
try 2 + or 3 + , with gene amplification. Therefore, subtype 
recognition in urothelial carcinoma may be in near future 
to better select patients for target therapies (Ching et al. 
2011; Behzatoğlu et al. 2018; Zinnall et al. 2018; Sangued-
olce et al. 2019).

her‑2 overexpression
Refers to an increase in the production of her-2 protein 
without an accompanying increase in gene copy num-
ber. This can occur due to transcriptional upregulation 
or post-translational stabilization of the HER2 protein. 
These overexpression guide to an excessive activa-
tion of downstream signaling pathways involved in cell 
proliferation, survival, and differentiation, contribut-
ing to tumor growth and progression. Targeting HER2 
with specific inhibitors (trastuzumab, pertuzumab) has 
become a cornerstone of treatment for HER2-positive 
cancers, offering improved outcomes and quality of life 
for affected patients (Sanguedolce et al. 2023).

HER‑2 amplification
HER2 gene amplification involves an increase in the 
number of copies of the HER2 gene, resulting in higher 
levels of her2 protein expression on the cell surface, 
resulting in an uncontrolled cell proliferation and 
tumor growth.
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HER‑2 mutation
Genetic alterations in various regions of the HER-2 gene 
that result in the production of a mutant her2 protein 
with altered structure and function, that can increase 
receptor dimerization and phosphorylation, promoting 
oncogenic signaling pathways or generate a ligand-inde-
pendent activation of HER-2 pathway.

Assessment of HER‑2 status by the pathologist
To date, there is no consensus on the best way to evalu-
ate HER-2 status in bladder cancer, as there are several 
studies with different evaluation methodologies: some 
evaluate overexpression using immunohistochemistry 
(Scherrer et  al. 2022), others evaluate HER-2 amplifica-
tion using situ hybridization (ISH) (Kamoun et al. 2020) 
and others search for the presence of HER-2 mutations 
with genetic sequencing. In addition to the different ways 
of accessing HER-2 status, we must take into account the 
variables of tumor heterogeneity and variations in intra- 
and inter-observer interpretations.

A tumor that presents overexpression of HER-2 does 
not necessarily have amplification of the gene detected, 
or even the presence of its mutation, which makes it dif-
ficult to establish an algorithm for evaluating the status 
of HER-2 in these neoplasms, making new multicenter 
studies necessary.

Most studies that evaluate HER-2 overexpression by 
immunohistochemistry (IHC) evaluate using criteria 
already established in breast (Wolff et al. 2018) and gas-
tric cancer, that is, they evaluate the percentage of cells 
with membrane labeling, classifying tumors as HER-2 
negative (0 +), HER-2 low (1 +) or HER-2 positive (2 + or 
3 +). Generally, the tumors subjected to this research are 
locally advanced or metastatic bladder cancer. The guide-
lines recommend trastuzumab, for gastric cancer, with 
chemotherapy only for patients with IHC 3 + and IHC 
2 + with evidence of HER-2 amplification by ISH (HER2 
/CEP17 ratio ≥ 2). Trastuzumab is not recommended if 
the IHC score is 0 or 1 + (Ajani et al. 2013).

Biomarkers in germ cell tumors of the testis
The vast majority (> 95%) of testicular cancers corre-
spond to germ cell tumors (GCTs), which are the most 
common solid neoplasms in young-adult Caucasian men 
aged 20–40 years (Trabert et al. 2015). These are grouped 
by the World Health Organization (WHO) as germ cell 
neoplasia in  situ (GCNIS)-derived tumors (i.e. postpu-
bertal-type tumors, the most common, typical of the 
young-adult male and showing malignant behavior) and 
GCNIS-unrelated tumors (including both prepubertal-
type tumors and spermatocytic tumors) (Berney et  al. 
2022). Testicular germ cell tumors (TGCTs) are called 

developmental cancers, since they reflect the various 
steps of embryonic and germ cell development, retaining 
features of their cell of origin, including their epigenetic 
traits (Lobo et al. 2019a, b, c). This has led to the proposal 
of a classification of GCTs which includes all genders 
and age groups, and focusing on distinct pathobiology, 
cytogenetic and epigenetic background. This classifica-
tion scheme comprises seven types of GCTs, of which 
only types I, II and III occur in the testis (corresponding 
to prepubertal-type tumors, postpubertal-type tumors 
and spermatocytic tumors, respectively) (Oosterhuis and 
Looijenga 2019). The study and better understanding of 
developmental biology has not only led to new classifi-
cation proposals, but also contributed to the discovery 
of most biomarkers that are clinically useful for TGCT 
patients (Tavares et al. 2023). These include, overall, the 
classical serum tumor markers (alpha fetoprotein [AFP] 
and human chorionic gonadotropin [HCG]), which are 
secreted and are critical during embryogenesis; the pluri-
potency factors (for instance, OCT3/4, among others) 
which are used by Pathologists in their daily routine for 
diagnosing and characterizing the different histologi-
cal types of TGCTs; and the embryonic microRNAs of 
the miR-371 ~ 373 cluster, which have emerged in recent 
years as the most promising non-invasive biomarker of 
TGCTs (Almstrup et al. 2020).

In the next sections we will review the current use of 
TGCT diagnostic and prognostic biomarkers, both in tis-
sue and liquid biopsies.

Classical serum tumor markers
The so-called “classical serum tumor markers” include 
AFP, HCG and lactate dehydrogenase (LDH). These are 
used every day in the clinic and play important roles in 
the management of TGCT patients, being measured 
at diagnosis, post-orchiectomy and in follow-up vis-
its (Murray et  al. 2016b). These markers are part of the 
TNM-S staging for TGCTs, with post-orchiectomy mark-
ers integrating the “S” parameter of such staging (Olden-
burg et al. 2022). Pre-orchiectomy serum tumor marker 
elevations are important for Pathologists, and should 
guide the grossing of testicular masses, looking for com-
ponents that explain such elevations above the reference 
levels (Verrill et al. 2017). Also, serum tumor markers are 
part of the International Germ Cell Cancer Collabora-
tive Group (IGCCCG) risk classification for metastatic 
patients, determining prognosis and, therefore, treatment 
(International Germ Cell Consensus Classification 1997).

HCG, which is produced by syncytiotrophoblast cells, 
is of importance during embryonic development, and 
its measurement is routinely used for diagnosis of preg-
nancy or for diagnosis and monitoring of molar disease 
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(Keay et al. 2004). It has a half-life of 12 to 36 h. HCG is 
elevated (usually several hundreds to thousands over the 
upper reference limit) in patients with choriocarcinoma, 
and such high elevations may exceptionally be used as 
indications to give pre-operative chemotherapy (Salem 
and Gilligan 2011). However, minor elevations may be 
seen in any TGCT subtype harboring foci of isolated syn-
cytiotrophoblast cells (which do not merit the designa-
tion of choriocarcinoma). About 15–30% of seminomas 
can, therefore, show minor elevations (Dieckmann et al. 
2018; Dieckmann et al. 2019). HCG elevations lack speci-
ficity, as they may also be seen in somatic malignancies 
(for instance in some forms of bladder cancer), and also 
secondarily in patients with hypogonadism (Stenman 
et al. 2004; Germa et al. 1987).

AFP is a glycoprotein detected in high concentrations 
in embryonal/fetal serum, being synthesized in the yolk 
sac, the site of embryonal hematopoiesis (Gitlin and 
Boesman 1967). Therefore, it is not surprising that it is 
a biomarker of yolk sac tumor histology. During the fetal 
stage hematopoiesis is transferred to the liver (and can 
occur for a brief period in the gastrointestinal tract as 
well), also explaining why around 20–25% of teratomas 
may secrete AFP (especially the ones showing hepatoid 
or intestinal features). AFP has a half-life of 5–7  days 
(7). However, AFP is physiologically elevated in the first 
year of life despite the absence of any TGCT (Blohm 
et  al. 1998), and a proportion of the population shows 
constitutional minor elevations of this serum marker 
(Houwert et  al. 2010), which can be a confounding fac-
tor. Like for HCG, AFP lacks specificity, being a tumor 
marker of hepatocellular carcinoma and of other carci-
nomas, namely those with enteroblastic differentiation 
(Murakami et  al. 2016). Moreover, patients undergoing 
chemotherapy may show elevations of AFP due to liver 
injury, which could erroneously be interpreted as tumor 
recurrence (Germà et al. 1993) (a dilemma shown in one 
study to be resolved by microRNA testing, see below).

LDH is by far the least specific of the classical serum 
tumor markers. LDH is increased in many conditions 
with elevated cell turnover (including many cancers, but 
also stroke, myocardial infarctions, infections, etc.) (Jialal 
and Sokoll 2015). Also, its half-life is variable among 
institutions, depending on the type of assay and iso-
form detected. These reasons make it the least specific of 
TGCT serum markers (Ackers and Rustin 2006).

All in all, and despite their usefulness, classical serum 
tumor markers have several limitations. They are only 
elevated in around 60% of TGCTs at diagnosis, and eleva-
tions of specific markers are dependent on the histologi-
cal composition of the tumor. There is an urgent need of 
additional non-invasive biomarkers which can overcome 
these limitations and complement these markers (Lobo 

et  al. 2023a). This is particularly important in the tes-
tis, since approach to a testicular mass does not usually 
involve testicular biopsy (for the associated risks, includ-
ing tumor seeding), and diagnosis of a malignant TGCT 
is only confirmed after orchiectomy is performed. This 
raises the need for liquid biopsy biomarkers with excel-
lent sensitivity and specificity for TGCT diagnosis, with 
microRNAs emerging in the latest years as the most 
promising candidates (see section below for discussion 
on microRNAs).

Immunohistochemistry markers
Pluripotency-related transcription factors are among the 
most robust biomarkers of TGCTs (Gillis et  al. 2011). 
They are detected by immunohistochemistry easily in 
every Pathology Department, and help define and con-
firm specific histological subtypes, being quite reliable in 
interpretation (with some caveats) (Siegmund et al. 2023, 
Ulbright et al. 2014) (Fig. 3).

One of the most used markers is SALL4, which is a 
pan-GCT marker, which can be quite useful in confirm-
ing a GCT origin in the event of cancers of unknown ori-
gin (Miettinen et al. 2014). It is upstream of OCT3/4 (also 
known as POU5F1), another very useful marker, which is 
an essential factor in the maintenance of embryonic stem 
cell and primordial germ cell pluripotency (Cheng et al. 
2007), being used in the clinic as a marker of embryo-
nal carcinoma and seminoma. Additionally, it is often 
employed in the work-up of testicular biopsies for infer-
tility on during follow-up of contralateral testis, to rule 
out GCNIS (Oosterhuis et al. 2011). Negativity in other 
histological subtypes with extra-embryonic differen-
tiation (yolk sac tumor, choriocarcinoma and teratoma) 
is consistent and very useful in practice. For instance, 
OCT3/4 negativity is especially useful for pinpointing 
small foci of yolk sac tumor, which may be difficult to dis-
cern from embryonal carcinoma. Like OCT3/4, NANOG 
is also part of the pluripotency network and signals both 
seminoma and embryonal carcinoma. LIN28, which is 
involved in microRNA maturation, was also found posi-
tive in GCNIS and seminoma (and also in additional sub-
types) (Cao et al. 2011). However, these are less available 
in most laboratories compared to OCT3/4.

Following a better understanding of reprogramming 
phenomena (i.e. transitions between cells with differ-
ent potency states, like the seminoma – embryonal car-
cinoma transition), members of the SOX family have 
also entered routine evaluation of GCTs by immuno-
histochemistry. SOX17 and SOX2 are, therefore, spe-
cific markers of seminoma and embryonal carcinoma, 
respectively (de Jong et al. 2008). Likewise, CD117 (KIT), 
a major factor regulating germ cell development, is used 
in routine as a marker of seminoma and GCNIS. This 
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tyrosine kinase receptor binds to stem cell factor and 
constitutes the most commonly mutated gene in TGCTs 
(Kemmer et  al. 2004). KIT is a reliable marker of semi-
noma independent of mutational status. However, focal 
staining in yolk sac tumor has been reported. In addition, 
placental-like alkaline phosphatase (PLAP) is also used 
primarily as a seminoma marker, but it can also show 
some positivity in other TGCT subtypes and even in 
non-GCT cancers (Wick et al. 1987). Of interest, strong 
expression of D2-40 is quite characteristic of seminoma, 
being negative in other GCT subtypes. On the other 
hand, CD30 is used frequently for supporting the diag-
nosis of embryonal carcinoma, especially if strong and 
diffuse (Ranjitha et al. 2022). Very focal positivity may be 
admitted in seminoma (which may also show focal stain-
ing with cytokeratins, particularly in a dot-like fashion, 
an important pitfall). It may be argued that these semi-
nomas already show evidence of initial reprogramming, 
and such intermediate phenotype of seminomas is sup-
ported also by molecular studies (Lobo et al. 2018). Reca-
pitulating uses in serum, HCG and AFP are also detected 
by immunohistochemistry for pinpointing choriocar-
cinoma/syncytiotrophoblast cells or yolk sac tumor, 
respectively. AFP is specific, but it lacks sensitivity, while 
glypican is more sensitive for detecting yolk sac tumor 
foci, but instead lacks specificity (also staining syncy-
tiotrophoblast cells, for instance) (Zynger et  al. 2006). 
GATA3 is also useful for supporting trophoblastic differ-
entiation, but also may stain yolk sac tumor.

There is a need of a specific teratoma marker, namely 
one that is discriminative from yolk sac tumor. Both 
tumors are challenging given their heterogeneity of mor-
phologies. To date, no perfect immunohistochemistry 
biomarker exists, and distinction is many times morpho-
logical. HNF1ß (Gallo et al. 2020) and FOXA2 (Ricci et al. 
2023) have been recently proposed as specific markers of 
yolk sac tumor, but are not currently widely disseminated. 
CDX2 is a sensitive marker of yolk sac tumor and may be 
useful for its wide availability in all laboratories, although 
it also stains glandular components of teratomas (Osman 
et al. 2016). SSX has also been advocated as a biomarker 
of spermatocytic tumors (Anderson et al. 2021), which is 
important to discriminate from seminoma, which may 
have a somewhat similar morphology.

Cytogenetic biomarkers
The hallmark of type II GCTs is the presence of gains 
of chromosome 12p, often in the form of isochromo-
some 12p, so this has become a robust biomarker of 
these tumors. Gains in 12p (a region including important 
TGCT markers, such as NANOG, GDF-4 or STELLA) 
mark the transition from GCNIS to seminoma and have 
several applications in practice for Pathologists (Atkin 

& Baker 1982). First, they can support a GCT origin in 
the event of a somatic malignant transformation, espe-
cially in the metastatic setting (which almost invariably 
shows poor prognosis) (Fichtner et al. 2021). The histol-
ogy of such tumors is indistinguishable from somatic 
cancers morphologically and by immunohistochemistry, 
and therefore showing presence of isochromosome 12p 
may truly support a GCT origin (Lobo et al. 2022). Like-
wise, absence of 12p gains supports a diagnosis of (most) 
spermatocytic tumors (which also display gains in chro-
mosome 9, leading to DMRT1 amplification), although a 
subset of spermatocytic tumors with aggressive behav-
ior have been shown to harbor gains in 12p (Gupta et al. 
2024). Also, it can also aid in resolving if a pure tera-
toma is a postpubertal-type or a prepubertal-type tumor, 
which is of clinical relevance since the former are malig-
nant, while the latter show a benign behavior and there 
is often no need to continue close surveillance. Impor-
tantly, prepubertal-type teratomas may often be detected 
later in life, in adults (Wagner et al. 2020). Total embed-
ding of adjacent parenchyma is recommended, looking 
for GCNIS or another histological component and, if 
not found, absence of gains in 12p may be the final proof 
that this is a type I (prepubertal-type) teratoma. Gains 
in 12p may be searched for using fluorescence in  situ 
hybridization (FISH), polymerase chain reaction (PCR), 
next generation sequencing (NGS), comparative genomic 
hybridization or single nucleotide polymorphism array 
(Freitag et al. 2021).

MicroRNAs
MicroRNAs have been the hot topic at the moment 
regarding biomarkers of TGCTs. Since the identification 
of members of the 371 ~ 373 microRNA cluster as specific 
biomarkers of this family of tumors, innumerous studies 
have accumulated, generating the evidence required for 
this biomarker to enter clinical trials (NCT04914026 and 
NCT04435756, which are ongoing) (Tavares et al. 2024) 
and, more recently, for the approval of an IVD test for 
miR-371a-3p testing in the clinic, the M371 test. It is fair 
to say that this biomarker is approaching clinical imple-
mentation, and therefore it is important for Pathologists 
to be acquainted with this molecular test. In this section 
we will give an overview of the panorama of microRNA 
testing in TGCTs.

MicroRNAs are part of the family of non-coding RNAs. 
Once considered “junk RNA”, it is now known that the 
non-coding fraction of our genome plays fundamental 
roles in physiological and disease states, being part of the 
epigenetic mechanisms of modification of gene expres-
sion. MicroRNAs have important roles in tumorigenesis, 
functioning either as oncogenic microRNAs (oncomiRs) 
or as tumor suppressors (tumor suppressor miRs) (Peng 
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and Croce 2016). The reason why microRNAs are so 
attractive as biomarkers has to do with a combination of 
features. They are small molecules, meaning that they are 
very stable in circulation and easily detected by low-cost 
and rapid techniques such as PCR, making them obvious 
candidates for non-invasive monitoring of disease. Also, 
they have a very short half-life and reflect disease bur-
den. Besides, available pipelines for their detection (PCR-
based) are overall simple and widely available in hospitals 
(Constâncio et al. 2023).

In 2006, members of the miR-371 ~ 373 cluster (specifi-
cally, miR-372-3p and miR-373-3p) were pinpointed as 
oncogenic in TGCTs (Voorhoeve et al. 2006), and paved 
the way for dozens of studies focused on these microR-
NAs. The reason for the success of this microRNA cluster 
has to do with its specificity for GCTs, which is the rea-
son these are called “embryonic microRNAs”. Testing in 
several other male tissues or cancers, non-GCT tumors 
or healthy volunteers with different features resulted in 
negative or negligible levels in circulation and in tissue 
(Boellaard et  al. 2019; Belge et  al. 2021), very contrast-
ing with elevated levels in most TGCT subtypes, with 
the remarkable exception of teratoma. Despite the mul-
tiple studies on clinical application, it is curious to realize 
that knowledge about the biology of these microRNAs 
is still scarce, apart from the establishment of a role in 
neutralizing p53 activity by interacting with LATS2 gene 
(Voorhoeve et al. 2006).

The first studies were conducted on tissues, also sup-
ported by in  vitro studies, and confirmed presence 
of high levels of miR-371a-3p, miR-372-3p and miR-
373-3p across histological subtypes of TGCTs (including 
GCNIS), in contrast to negative levels in normal paren-
chyma and non-GCT masses (Belge et  al. 2021; Vilela-
Salgueiro et  al. 2018; Palmer et  al. 2010). These studies 
also concurred on the decline of miR-371a-3p in differ-
entiated teratoma tissues, almost always being negative. 
This has propelled researchers to seek additional markers 
specific for teratoma (Yodkhunnatham et al. 2024), which 
could be clinically useful in the metastatic setting after 
chemotherapy, and despite some candidates, like miR-
375 (Nappi et al. 2021a; Lafin et al. 2021) or hypermethyl-
ated RASSF1A (Lobo et al. 2021b), such a marker is still 
not available. Studies on tissue are also useful for shed-
ding light on rare tumor entities which are poorly under-
stood, for instance cystic trophoblastic tumor, which was 
shown to harbor levels of miR-371a-3p closer to tera-
toma, denoting a maturation process and approximating 
these two entities which have indolent behavior, very dif-
ferent from choriocarcinoma (Lobo et al. 2023b).

Given the practical advantages of microRNAs as liq-
uid biopsy biomarkers, studies in bodily fluids were 

rapidly undertaken with high success. Quantification of 
members of the miR-371 ~ 373 cluster was accomplished 
in serum or plasma with > 90% sensitivity and specific-
ity for diagnosis of TGCT at diagnosis, surpassing the 
combined sensitivity of all three classical serum tumor 
markers available in the clinic (for review of these stud-
ies, see (Leão et al. 2021). Such performance was main-
tained in studies from several groups and in prospective, 
multi-institutional investigations, using slightly different 
pipelines (Nappi et  al. 2021b; Dieckmann et  al. 2019b). 
MicroRNA elevations are seen across histologies, being 
less dependent on histological composition of the tumor, 
and were not detected in other conditions (for instance, 
patients with hepatocellular carcinoma with high AFP 
or individuals with constitutive elevated AFP were nega-
tive for miR-371a-3p (Sequeira et  al. 2022). Also, these 
microRNAs could also be used to diagnose GCTs in cer-
ebrospinal fluid and pleural effusions and hydrocele fluid, 
while results for seminal plasma have been less impres-
sive (Murray et al. 2016a; Radke et al. 2019; Dieckmann 
et al. 2016; Spiekermann et al. 2015).

The half-life of miR-371a-3p was shown to be less 
than 4  h (Lobo et  al. 2019a), and levels were shown to 
reflect disease burden, signaling relapses with better per-
formance than classical serum tumor markers, which 
display poor sensitivity in this setting. This was particu-
larly validated in active surveillance cohorts (with 94% 
of relapsed patients showing elevated miR-371a-3p, but 
only 38% showing elevation of any classical serum tumor 
marker), and in one study also signaled relapses earlier 
than standard imaging modalities (Lobo et  al. 2021a; 
Fankhauser et al. 2022a; Belge et al. 2024). A cost analy-
sis (Charytonowicz et al. 2019) indicated that introducing 
microRNA testing in clinical practice had the ability to 
reduce costs with patient follow-up by reducing the fre-
quency of imaging scans, also reducing exposure to ion-
izing radiation.

MicroRNA testing was also employed in the meta-
static setting, where it correlated with response to 
chemotherapy and predicted histology at retroperitoneal 
lymph-node dissection (RPLND), discriminating non-
teratomatous viable GCT elements with high accuracy 
(Leão et  al. 2018). This is important since such patients 
merit additional chemotherapy, while masses exclusively 
with teratoma only benefit from surgery.

From many of these studies, miR-371a-3p was consist-
ently the member of the cluster with best performance, 
and is currently the marker most explored in current 
times, in some investigations showing the same perfor-
mance as the combination of the three members (Piao 
et al. 2021).
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Current challenges in the field of microRNA test-
ing in TGCTs include bringing together all the studies 
and defining a universal standard operating procedure 
(SOP) and pipeline for sample storing and selection, 
RNA extraction, PCR reaction, normalization and quan-
tification, all of which have had variations by the dif-
ferent studies (Nappi et  al. 2019a, b, Lafin et  al. 2023). 
The impact of hemolysis and pre-analytics has to be 
addressed if one wants to move the test definitely to the 
clinic. This is an area where Pathologists can be of much 
help as part of a multidisciplinary team, with their exper-
tise in sample features, diagnostics and molecular tests 
(Fonseca et al. 2022). Additional discussions are ongoing 
regarding obtaining optimal sensitivity for detecting min-
imal residual disease immediately after orchiectomy and 
predicting relapse, which has not been achieved to date, 
or even approaching small testicular masses or GCNIS 
(Fankhauser et al. 2022b).

Additional biomarkers
The search for clinically relevant TGCT biomarkers has 
been tackling multiple fronts, but these are not ready 
for prime-time yet. For instance, additional epigenetic 
mechanisms besides microRNAs have been explored. 
Despite the rich epigenetic landscape of TGCTs and the 
overwhelming differences in DNA methylation between 
subtypes (Shen et  al. 2018), namely between semino-
mas and non-seminomas (the former being largely 
hypomethylated), methylation-based markers are still 
not in use. There is also evidence of differential hyper-
methylation and changes in histone marks in the event 
of cisplatin-resistance, which could be therapeutically 
targeted with demethylating agents (Lobo et al. 2021c; 
Fazal et  al. 2021). The study of TGCTs microenviron-
ment has also led to interesting results, namely PD-L1 
expression in tumor cells and in immune cells correlat-
ing with poorer and better survival, respectively) (Lobo 
et  al. 2019b; Cierna et  al. 2016), but results of trials 
using immunotherapy have been less than satisfactory 
at the moment (Tsimberidou et  al. 2021). Likewise, 
studies have explored homologous recombination (and 
other DNA repair pathway markers) as biomarkers of 
sensitivity to PARP inhibitors (Lobo et  al. 2021c), but 
trials with these drugs have also showed little success 
(De Giorgi et  al. 2020). Other biomarkers commonly 
used in routine assessment of other neoplasms by 
Pathologists include MDM2 amplification, which cor-
related with aggressive disease (Lobo et al. 2020; Bagro-
dia et  al. 2016), mismatch repair (MMR) deficiency 
(Honecker et al. 2009), which were linked to treatment 
failure, and proliferation index (Ki67), which was not of 
prognostic value in a study using digital image analysis 
(Lourenço et al. 2022).

Biomarkers in tumors of the testicular stroma 
and sex cords
Testicular sex cord stromal tumors (TSCSTs) are less 
frequent that germ cell tumors, representing approxi-
mately 5% of testicular neoplasms overall (Dilworth et al. 
1991). Proper identification of TSCSTs is clinically rel-
evant because, unlike GCNIS-derived germ cell tumors, 
most of them are indolent and potentially amenable to 
conservative surgical management (i.e., testis-sparing 
surgery) in prepubertal children and patients of repro-
ductive age (Nicolai et al. 2015). Additionally, some his-
tologic subtypes of TSCTs have been associated with 
disorders of sex development and inherited cancer pre-
disposition syndromes; therefore, their correct identifi-
cation may have significant impact on patients and their 
families (Ulbright et al. 2007; Al-Obaidy et al. 2022; Sieg-
mund et al. 2023; Yu et al. 2023). It is crucial to recognize 
primary TSCSTs with features that portend a high risk of 
metastases, since timely surgical intervention (including 
upfront retroperitoneal lymph node dissection as well as 
early resection of suspected metastatic lesions) is cur-
rently the best available therapeutic option for patients 
with these notoriously chemotherapy-resistant neo-
plasms (Mosharafa et  al. 2003; Featherstone et  al. 2009; 
Calaway et al. 2019; Nicolai et al. 2015).

TSCSTs encompass a diverse group of tumors with dis-
tinct histological features and clinical behavior; in recent 
years, several tissue-based biomarkers have emerged as 
valuable tools for improving our understanding of their 
biologic characteristics and guiding clinical management. 
In this section, we will focus on adjunctive biomark-
ers useful for diagnosis and prognostication of the most 
common histologic subtypes of TSCSTs. Some excep-
tionally rare entities will not be discussed, since they are 
beyond the scope of this succinct review. Also, for the 
sake of brevity, histopathologic and clinical characteris-
tics of these tumors (including criteria for malignancy) 
will not be extensively reviewed herein. The reader is 
referred to other texts for detailed and comprehensive 
clinicopathologic descriptions of these tumors (Cheng 
et  al. 2020; Ulbright et  al. 2022; Cheville 1999; Acosta 
et  al. 2024a; Dashora et  al. 2022; Al-Obaidy et  al. 2021; 
Colecchia et al. 2022).

Leydig cell tumor
Leydig cell tumor (LCT) is the most common TSCST 
subtype, affecting both pediatric and adult patients 
(~ 20% and ~ 80% of cases, respectively) (Dilworth 
et al. 1991; Cheville 1999; Conkey et al. 2005). Pediatric 
tumors are invariably indolent; in contrast, up to 10% of 
adult LCTs behave aggressively (Fankhauser et al. 2020). 
Although there are no specific diagnostic biomarkers 
for LCTs, molecular alterations with potential value for 
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predicting clinical behavior have been recently identi-
fied (Colecchia et  al. 2021; Necchi et  al. 2019; Rizzo 
et  al. 2021). Predictive biomarkers are particularly rel-
evant because there are no clinically validated criteria 
for malignancy, and the behavior of some LCTs may be 
unpredictable (Fankhauser et  al. 2020; Colecchia et  al. 
2021; Necchi et al. 2019; Rizzo et al. 2021).

LCTs are typically positive for one or more of the 
immunomarkers used to support a sex cord stromal 
“lineage”. Of note, none of these markers are specific for 
sex cord stromal tumors in general or for LCTs in par-
ticular. Among them, the most sensitive are alpha inhi-
bin and SF1 (positive in > 95% of LCTs each), followed 
by calretinin (positive in approximately 80%) (23,24). 
FOXL2, WT1 and SOX9, which typically mark sex cord 
derivatives, are positive a minor subset of LCTs (up to 
20%). Expression of markers such as AR, Melan A, and 
synaptophysin has been described in the past, but their 
clinical utility is limited (Lau et al. 2021; Iczkowski et al. 
1998). Perhaps one exception is the use of AR to differ-
entiate between LCTs (typically positive) and the testicu-
lar tumors of the androgenital syndrome (expected to be 
negative) (Wang et al. 2011). Focal keratin expression can 
be seen in some LCTs, representing a potential pitfall, 
especially when these tumors are found in extratesticular 
(i.e., metastatic) sites.

Nuclear expression of beta-catenin, which has been 
initially posited to be specific for Sertoli cell tumor, not 
otherwise specified (SCT-NOS), is also frequently seen in 
LCT (~ 40–50%) (Lau et al. 2021; Iczkowski et al. 1998). 
However, the expression pattern is different in these 
tumor types, being focal or multifocal in LCT and char-
acteristically diffuse in SCT-NOS (Rizzo et al. 2021; Lau 
et al. 2021; Kitagawa et al. 2024) (Fig. 4). This pattern of 
nuclear beta catenin expression correlates well with find-
ings of genomic studies (see below) (Rizzo et  al. 2021; 
Kitagawa et  al. 2024). Among predictive immunomark-
ers, FH and MDM2 have been proposed as potentially 
useful adjunctive tests to identify primary (i.e., testicular) 
tumors with metastatic potential, and their assessment is 
suggested in testicular LCTs with worrisome histologic 
findings (Colecchia et al. 2021; Necchi et al. 2019; Rizzo 
et al. 2021). More specifically, loss of FH expression and 
overexpression of MDM2 have been identified as recur-
rent findings in subsets of aggressive LCTs (see below) 
(Colecchia et  al. 2021; Necchi et  al. 2019; Rizzo et  al. 
2021) (Fig. 5).

Molecular analyses have suggested that LCTs of pediat-
ric and adult patients may harbor different genomic alter-
ations. A recurrent somatic gain-of function mutation of 
the receptor for luteinizing hormone and human chori-
ogonadotropin (LHCGR  p.R578H) has been described in 
pediatric LCTs (Liu et al. 1999). This variant leads to the 

activation of downstream Gs signaling, inducing prolif-
eration of Leydig cells (Acosta et al. 2024a, b). In line with 
these findings, occasional adult LCTs with hotspot codon 
201 GNAS variants have been described (Libé et al. 2012). 
However, most LCTs in adult patients lack LHCGR  and 
GNAS variants (Carvajal-Carmona et al. 2006). Instead, a 
significant proportion of adult LCTs harbor gain-of-func-
tion CTNNB1 variants (typically affecting exon 3) (Rizzo 
et  al. 2021; Gao et  al. 2017). Comparison of tumor cel-
lularity and variant allele frequencies (VAF) suggests that 
CTNNB1 are present mostly as subclonal events in LCTs, 
explaining the focal or multifocal (rather than diffuse) 
expression of nuclear beta-catenin seen with immuno-
histochemistry (Rizzo et  al. 2021; Kitagawa et  al. 2024). 
FH variants were initially described in 2 LCTs from adult 
patients, one of whom had evidence of hereditary leio-
myomatosis and renal cell carcinoma (Carvajal-Carmona 
et al. 2006). More recent studies have suggested that FH 
variants correlate with the presence of aggressive histo-
pathologic features and malignant clinical behavior in 
this tumor type (Rizzo et  al. 2021; Carvajal-Carmona 
et al. 2006; Acosta et al. 2023b). Another recently posited 
predictive biomarker is MDM2, with recurrent ampli-
fications being identified by genomic DNA sequencing 
in 30–50% of clinically malignant LCTs in two separate 
studies (Colecchia et al. 2021; Rizzo et al. 2021). Of note, 
these amplification events can be also detected by fluo-
rescence in-situ hybridization or suggested by immuno-
histochemistry (likely requiring confirmation with other 
techniques) (Rizzo et  al. 2021). Recurrent gene fusions 
involving exon 2 of the TERT gene have also been 
described in malignant LCTs (Kruslin et al. 2021). In line 
with this finding, Rizzo et  al. described TERT amplifi-
cations in examples of aggressive LCTs, suggesting that 
activation of this gene may play a role in biologic progres-
sion (Rizzo et al. 2021).

Sertoli cell tumor, not otherwise specified (SCT‑NOS)
SCT-NOS is the second most common type of sex cord 
stromal tumor in men, representing ~ 1% of all testicu-
lar neoplasms (Dilworth et  al. 1991; Cheng 2020). Sex 
cord stromal tumors with signet ring cell morphology, 
regarded as a separate entity in the latest WHO classi-
fication of tumors of genitourinary and male reproduc-
tive organs (2022), may represent a variant of SCT-NOS 
(see below) (Michalova et  al. 2017; WHO 2022). Like 
LCT, SCT-NOS may affect adult and pediatric patients, 
and ~ 10% may exhibit malignant clinical behavior (Grogg 
et  al. 2020a). Of note, malignant SCT-NOS with mor-
phologic features resembling those of seminoma have 
been well-recognized (Acosta et  al. 2023a; Carrillo-Ng 
et  al. 2024). A highly recurrent genomic alteration has 
been identified in these cases, suggesting that they likely 
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represent a distinct entity (Acosta et al. 2023a; Carrillo-
Ng et al. 2024).

SCT-NOS express one or more of the typical markers 
used to determine sex cord stromal lineage; among them, 
the most sensitive ones are SF1 (~ 80%) and SOX9 (~ 60%) 
(Lau et al. 2021; Mesa et al. 2017; Zhao et al. 2018). WT1, 
calretinin, and FOXL2 are also useful, but have some-
what limited analytic sensitivity (~ 40% to 50% each), 
whereas inhibin has been described as typically negative 

in some studies (Lau et al. 2021; Mesa et al. 2017; Zhao 
et al. 2018). Beta-catenin is a relatively sensitive marker, 
with diffuse nuclear expression seen in ~ 70% of SCT-
NOS overall (Lau et  al. 2021; Perrone et  al. 2014; Kao 
and Ulbright 2020; Rizzo et al. 2023; Zhang and Ulbright 
2015). Studies suggest that nuclear beta-catenin expres-
sion is seen in the vast majority (> 90%) of typical SCT-
NOS with non-aggressive clinicopathologic features. This 
suggests that the diagnosis of SCT-NOS should be ques-
tioned if there is no nuclear beta catenin expression in a 
seemingly indolent TSCST without obvious morphologic 
features of SCT-NOS (e.g., absence of noticeable tubu-
lar or corded architecture) overall (Lau et  al. 2021; Per-
rone et al. 2014; Kao and Ulbright 2020; Rizzo et al. 2023; 
Zhang and Ulbright 2015). Conversely, histologically 
indolent sex cord stromal tumors with unusual architec-
tural patterns (e.g., reticular or microcystic) and diffuse 
nuclear beta catenin expression show genomic methyla-
tion profiles indistinguishable from those of typical SCT-
NOS, suggesting that they may represent morphologic 
outliers of this entity (Siegmund et al. 2022a). Malignant 
sex cord stromal tumors resembling seminoma are posi-
tive for SF1 and/or other sex cord-stromal lineage mark-
ers, and they frequently express CD30 (Acosta et  al. 
2023a; Carrillo-Ng et al. 2024).

From a molecular perspective, nuclear expression of 
beta catenin is associated with gain-of-function exon 3 
CTNNB1 variants in most SCT-NOS (Gao et  al. 2017; 
Rizzo et  al. 2023; Siegmund et  al. 2022a). More specifi-
cally, CTNNB1 mutations have been identified in ~ 70% 
of all SCT-NOS (Perrone et  al. 2014). Of note, these 
analyses pre-date the identification of a recurrent gene 
fusion in malignant TSCTs that resemble seminoma, 
which likely represent a different entity; hence, the over-
all frequency of beta-catenin alterations in true SCT-
NOS may be slightly higher. (Perrone et  al. 2014; Rizzo 
et al. 2023). Of note, a minor subset of SCT-NOS harbor 
loss-of-function APC variants which, like CTNNB1 vari-
ants, are expected to result in upregulation of Wnt sign-
aling (Rizzo et al. 2023). Importantly, some APC variants 
in SCT-NOS are of germline origin and associated with 
familial adenomatous polyposis (Rizzo et  al. 2023; Sieg-
mund et al. 2022a; Siegmund et al. 2023). Some syndro-
mic SCT-NOS may be bilateral or multifocal; otherwise, 
their histologic features are indistinguishable from those 
of sporadic SCT-NOS (Rizzo et al. 2023; Siegmund et al. 
2022a; Siegmund et  al. 2023). Genetic counseling or 
germline assessment should be considered in bilateral 
or multifocal SCT-NOS in patients with unknown ger-
mline/syndromic status. Excluding the gene fusion men-
tioned below, highly recurrent genomic alterations useful 
for prognostication have not been identified in malignant 
SCT-NOS. Clinically aggressive cases with CTNNB1 

Fig. 2 Small cell neuroendocrine carcinoma can be distinguished 
from high‑grade acinar adenocarcinoma of the prostate 
by morphology (A HE stain showing acinar adenocarcinoma 
at right and small cell neuroendocrine carcinoma at left). In addition 
to extensive / geographical necrosis and high cellularity, small 
cell carcinoma is characterized by nuclear moulding, speckled 
chromatin (salt‑and‑pepper pattern), with small or absent nucleoli, 
and numerous figures of mitosis and apoptosis (B HE). These tumors 
usually express neuroendocrine markers and no or little expression 
of prostatic differentiation. Other useful findings in small cell 
neuroendocrine carcinoma of the prostate is the expression of TT1 (C) 
and a Ki67 proliferative index higher than 50% (D)
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mutations (unlike benign counterparts) exhibit multiple 
chromosomal imbalances (i.e., aneuploidy), which likely 
underlie biological progression (Necchi et al.2019; Zhao 
et  al. 2018; Rizzo et  al. 2023). As mentioned above, a 
subset of malignant TSCSTs with morphologic charac-
teristics mimicking those of seminoma have been well 
described in the literature (Acosta et al. 2023a; Carrillo-
Ng et  al. 2024). These tumors were initially interpreted 
as examples of malignant SCT-NOS, likely because they 
show some evidence of sex cord differentiation (Acosta 

et  al. 2023a; Carrillo-Ng et  al. 2024). Recent analysis of 
these neoplasms using DNA sequencing and fluores-
cence in-situ hybridization demonstrated highly recur-
rent EWSR1::ATF1 gene fusions that encompass exons 
1–6/7 of EWSR1 and exons 4–7 of ATF1 (Acosta et  al. 
2023a). These fusions are expected to produce pro-
tein products that contains the transactivation domain 
EWSR1 and the DNA binding domain of ATF1 (Acosta 
et  al. 2023a; Carrillo-Ng et  al. 2024). Hence, this event 
is hypothesized to result in a change in gene expression 

Fig. 3 Seminoma with immunoexpression of cytokeratins (CK8/18). Expression of cytokeratins may be seen in seminomas (sometimes 
with a dot‑like pattern), and constitutes a diagnostic pitfall, especially in the case of loss of the typical clear cytoplasm and in the event of increased 
pleomorphism and foci of necrosis, where it can be mistaken for embryonal carcinoma, as in the present case (A and B). Utility of OCT3/4 
in the diagnosis of mixed tumors. This mixed tumor is composed of embryonal carcinoma and yolk sac tumor. The two components are 
intermingled and may be difficult to distinguish on H&E sections. OCT3/4 is useful in this differential, highlighting the embryonal carcinoma cells, 
and being negative in the yolk sac tumor areas (C and D). Metastatic germ cell tumor to the lung. The patient presented with a lung mass and had 
a history of a previous testicular tumor. OCT3/4 was positive (as was CD30 and cytokeratins, not shown), confirming the diagnosis of an embryonal 
carcinoma component. There were also foci of syncytiotrophoblast cells represented in the biopsy, which were negative for OCT3/4 (and positive 
for HCG, not shown), and explained the high serum levels of HCG (E and F)
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patterns by a mechanism of “promoter-hijacking”. Given 
the unique morphologic, clinical, and molecular features 
of these neoplasms, they have been proposed to repre-
sent a distinct entity.

Large cell calcifying Sertoli cell tumor (LCCSCT)
Large cell calcifying Sertoli Cell (LCCSCT) is a spe-
cific subtype of Sertoli cell tumor characterized by large 
polygonal neoplastic cells with abundant eosinophilic 
cytoplasm, myxoid stroma containing neutrophilic infil-
trates and variably abundant laminated “mulberry-like” 
calcifications. LCCTs may occur sporadically or in the 
context of inherited cancer predisposition syndromes, 
including Carney complex, Peutz-Jeghers syndrome 
and neurofibromatosis type 1 (4,5,45,46). The frequency 
of its association with the Carney complex has ranged 
from ~ 10%-40% in different publications (Yu et al. 2023; 
Al-Obaidy et al. 2022). Approximately 10% of LCCSCTs 
are malignant, and aggressive cases seem to be largely 
sporadic (Abdulfatah et al. 2024).

LCCSCT express one or more of the non-specific 
markers used to determine sex cord stromal lineage 

(Anderson et  al. 2022; Petersson et  al. 2010). Sporadic 
counterparts of other tumors associated with the Carney 
complex, such as malignant melanocytic nerve sheath 
tumor, typically exhibit functional loss of the regulatory 
subunits of the protein kinase A tetramer (PRKAR1A), 
leading to constitutive activation of the catalytic subu-
nits of the complex (Al-Obaidy et  al. 2022; Anderson 
et  al. 2022; Petersson et  al. 2010). This seems to occur 
also in LCCSCT, which demonstrate loss of PRKAR1A 
expression demonstrated by immunohistochemistry 
in > 90% of cases (Yu et  al. 2023; Al-Obaidy et  al. 2022; 
Anderson et al. 2022; Petersson et al. 2010). This immu-
nostain seems is specific for LCCSCT, since morphologic 
mimics consistently demonstrate retained expression 
of the marker (Anderson et  al. 2022; Sato et  al. 2005). 
From a genomic perspective, all LCCSCTs analyzed to 
date (both sporadic and syndromic) have shown patho-
genic PRKAR1A variants (Yu et  al. 2023; Abdulfatah 
et al. 2024; Anderson et al. 2022; Petersson et al. 2010). 
Hence, the presence of PRKAR1A alterations, detected by 
molecular studies or immunohistochemistry, is a desir-
able diagnostic feature for this entity, especially when 
candidate tumors that lack prototypical morphologic fea-
tures (Fig. 6). Malignant progression seems to be associ-
ated with the acquisition of chromosomal imbalances/
aneuploidy, biallelic inactivation of important tumor 

Fig. 4 Sertoli cell tumor, NOS (A 100x magnification) with nuclear 
beta‑catenin positivity (B 100x)

Fig. 5 Leydig cell tumor (A HE 200x magnification) with FH loss (B 
200x)
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suppressors (CDKN2A), or additional mutations (Yu 
et al. 2023; Abdulfatah et al. 2024; Anderson et al. 2022).

Granulosa cell tumors
Granulosa cell tumors of the testis are defined by their 
morphologic resemblance to ovarian counterparts, 
being divided into adult-type (AGCT) and juvenile-type 
(JGCT) (Cheng 2020; WHO 2022). Testicular AGCT 
comprise a very wide morphologic spectrum, including 
tumors with prominent cystic change and spindle cell 
components. Unlike ovarian AGCT, they typically do not 
produce sex hormone, presenting instead as a painless 
testicular mass. They affect post-pubertal adult men and 
approximately 10–20% metastasize, with poor clinical 
outcomes (Grogg et al. 2020b; Cornejo and Young 2014). 
Adult granulosa cell tumors stain for sex cord markers 
(such as WT1, calretinin, FOXL2) as well as for inhibin 
and SF1 (not mutation-specific) (Grogg et al. 2020b; Cor-
nejo and Young 2014), but there are currently no specific 
immunomarkers (Lau et al. 2021). Of note, a significant 
subset expresses keratins (up to ~ 60%) and S100 (up 

to ~ 60%) (Costa et al. 1994). EMA has been proposed as 
a useful marker to distinguish between AGCT and JGCT, 
with the former being positive and the latter being nega-
tive (Costa et  al. 1994; McCluggage 2005; Riopel et  al. 
1998). In AGCT, histochemical studies highlight reti-
culin fibers surrounding groups of cells rather than indi-
vidual tumor cells (as seen in fibromas) (Stall and Young 
2019). From a molecular perspective, ovarian AGCT 
consistently harbor a gain-of-function FOXL2 vari-
ant (p.C134W), which has been in more than 90% cases 
across different studies (Lima et al. 2012; Shah et al. 2009; 
Pilsworth et  al. 2021). In contrast, testicular AGCT are 
genomically heterogeneous, with only a minority harbor-
ing FOXL2 p.C134W (Grogg et  al. 2020b; Cornejo and 
Young 2014; Siegmund et al. 2022b). The single recurrent 
finding in testicular AGCTs is heterozygous copy number 
losses involving the long arm of chromosome 22 (~ 70%); 
this alteration is frequent across different cancer types 
and most likely represents a random recurrent finding 
(Siegmund et  al. 2022b). Given the morphologic and 
molecular heterogeneity of testicular AGCTs, it is possi-
ble that this diagnostic category comprises a miscellane-
ous group of TSCST that cannot be classified into other 
defined histologic subtypes (e.g., LCT or SCT-NOS).

Testicular JGCTs represent largely an infantile entity, 
with 90% of cases occurring in patients of up to 6 months 
of age (Grogg et  al. 2020b; Kao et  al. 2015). They only 
rarely occur in children older than 1 year and are always 
benign (Grogg et  al. 2020b; Kao et  al. 2015). Unlike 
ovarian counterparts, they are not hormonally active, 
and subsets are associated with undescended testes or 
gonadal dysgenesis (Kao et al. 2015). Immunohistochem-
istry is rarely needed for diagnostic purposes, but tes-
ticular JGCTs express general sex cord stromal tumor 
markers (SF1, WT1, calretinin) (Grogg et al. 2020b; Kao 
et  al. 2015; Collins et  al. 2023a). Ovarian JGCTs typi-
cally harbor internal tandem duplications in the ankyrin 
homology domain of AKT1, gain-of-function codon 201 
GNAS variants, and/or mutations in genes that regulate 
chromatin structure (KMT2D, ARID1A) (Collins et  al. 
2023a; Kalfa et al. 2006; Auguste et al. 2015). In contrast, 
testicular JGCTs are mutationally silent and exhibit mon-
osomy 10 in ~ 60% of cases (Collins et al. 2023a).

Tumors with pure or prominent gonadal stromal 
components
This category includes tumors with pure or predomi-
nant spindle cell components that are thought to derive 
from the gonadal stroma, including fibroma/thecoma, 
myoid gonadal stromal tumor, and mixed tumors with 
sex cord and stromal components (sometimes referred 
to as “Sertoli-stromal cell tumors” in the literature) 
(Ulbright et  al. 2022; WHO 2022; Zhang et  al. 2013; 

Fig. 6 Large cell calcifying Sertoli cell tumor (A HE 
100x magnification) with PRKAR1A loss (B 100x)
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Jones et al. 1997; Kao and Ulbright 2014). These tumors 
express at least one of the markers used to establish 
sex cord stromal lineage, with the caveat that myoid 
gonadal stromal tumors may be consistently nega-
tive for SOX9 (although the number of cases analyzed 
to date is very small) (Zhang et  al. 2013; Jones et  al. 
1997; Kao and Ulbright 2014). Myoid gonadal stromal 
tumor has been recently introduced as a distinct entity 
in the WHO, being defined as a gonadal stromal tumor 
with pure spindle cell histology and co-expression of 
SMA and S100 (WHO 2022; Kao and Ulbright 2014). 
Fibroma/thecoma lack a specific immunoprofile and are 
defined largely based on their resemblance to ovarian 
counterparts (Zhang et  al. 2013; Jones et  al. 1997). A 
small subset of mixed sex cord stromal tumors (includ-
ing “Sertoli-stromal cell tumors”) exhibits nuclear beta 
catenin expression limited to the sex cord components. 
Except for the small number mixed sex cord stromal 
tumors with nuclear beta-catenin expression, which 
harbor CTNNB1 variants, recurrent mutations or gene 
fusions have not been identified in these TSCSTs (Sieg-
mund et  al. 2022a; Acosta et  al. 2024b; Collins et  al. 
2023b). Genomic analyses of tumors with pure or pre-
dominant spindle cell components that were originally 
classified as myoid gonadal stromal tumor, Sertoli-stro-
mal cell tumor, and unclassified sex cord stromal tumor 
have demonstrated a recurrent pattern of chromosomal 
gains suggestive of a global shift in ploidy. Hence, it is 
possible that these different tumor types may represent 
part of a biologic and histopathologic spectrum (Sieg-
mund et  al. 2022a; Acosta et  al. 2024b). Importantly, 
tumors with pure spindle cell components classified 
as fibroma/thecoma and myoid gonadal stromal tumor 
are invariably indolent (Kruslin et al. 2021; Zhang et al. 
2013; Jones et al. 1997; Kao and Ulbright 2014).

Conclusion
Molecular pathology is developing fast in the field of 
many types of Urologic Cancers and can be essential in 
adopting precise therapy. Pathologists should be famil-
iar with recent updates on prognostic and predictive 
biomarkers that will be increasingly more relevant and 
requested in daily practice.
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